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Preface

The primary purpose of this booklet is to serve as the companion to the IGERT (Inte-
grative Graduate Education and Research Traineeship) course on neutron scattering
at a steady state nuclear reactor. However, it is our hope that this booklet will serve
the broader purpose of a quick reference guide for those who will perform neutron
scattering experiments once the course is over, or for those who have an interest in
performing neutron scattering experiments for the first time.

We aim to provide a conceptual understanding of the technique of neutron scat-
tering, an understanding that should allow a neutron scattering user to successfully
plan, carry out and analyze scattering experiments in the fields of physics, chemistry,
biology, engineering and geology. As such, this booklet will be very light on equa-
tions; in fact, equations serve the purpose of providing background information rather
than being an essential part of teaching the technique. Because of our aim, we will
sometimes have to make our arguments in a rather hand-waving manner, and we have
no intention of being complete in the materials we present. We understand that this
may make some experienced users- especially those with a physics background- cringe,
however, this cannot be avoided.

Given the different backgrounds and interests of the IGERT participants, we start
out this booklet at a rather basic level, perhaps unbecoming of a graduate course.
These introductory chapters can easily be skipped by those already familiar with the
essentials of modern physics, such as wave particle duality and interference effects.
Notwithstanding these limitations in scope, we hope that the reader will enjoy this
booklet and we certainly welcome any and all feedback. Finally, everyone is welcome
to reproduce any part of this book, as long as it is for educational purposes.

Tom Heitmann and Wouter Montfrooij

August 2012,

Columbia, Missouri.
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1

Introduction and Outline

Neutron scattering is an experimental technique whereby we can learn about the mi-
croscopic structures of our materials and the movements of the atoms and molecules
within these structures. Some of the questions that we might have about the structure
and dynamics of our materials can very easily be answered by doing neutron scat-
tering experiments; the answers to some other questions require some more elaborate
experiments, while the answers to yet some other questions should not be sought by
using this technique. We will provide a practical guide as to what can be measured,
and what should be left alone.

Neutron scattering is an interference based technique, similar to light scattering.
The principles behind interference are easy to visualize, and once these principles are
understood, neutron scattering will no longer be a ’black-box’ technique but rather it
becomes a versatile tool for learning about the microscopic behavior of one’s materials.
At this level, the neutron scattering user can benefit fully from the unique capabilities
of this scattering technique, capabilities that allow for the uncovering of details that
cannot be learned through any other technique. As such, we start out this booklet with
a brief review of what interference entails, and how it relates to scattering experiments.

As the title of this booklet promises, the presented materials are meant to be a prac-
tical guide. Practical guides and user manuals already exist for various spectrometers
in various places, but generally it is difficult to come by all the required information
before planning an experiment. This booklet should help somewhat in filling in this
gap. In addition, most basic texts on neutron scattering deal with the connection be-
tween the idealized scattering by a sample, and the underlying microscopic behavior.
In general, this information is not all that helpful in planning a successful experiment,
in selecting the best instrument for answering particular questions, and in being able
to correct the resulting data for unwanted scattering events and artifacts. Once again,
this booklet should be somewhat helpful in overcoming these difficulties.

The outline of this booklet is the following. The first part of the book discusses
some generalities about neutron scattering. First we discuss the relationship between
neutrons, interference, and what is measured in a scattering experiment. This is done
in Chapter 2. In the next chapter, we review some of the basic properties of the neutron
and we combine this with the interference technique to review what can be measured.
In Chapter 4 we delve into a bit more detail and discuss what actually is measured,
and how this relates to what information we would like to uncover.
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In the second part of this booklet we continue with a more detailed discussion of
the various most commonly used spectrometers that are available for doing neutron
scattering experiments. There are dedicated chapters for diffractometers (Chapter 5),
powder diffractometers (Chapter 6), SANS diffractometers (Chapter 7), reflectometers
(Chapter 8) and triple-axis spectrometers (Chapter 9). These chapters describe the
(basic) operations of the spectrometers, how to use them in a sensible manner, and
potential pitfalls in acquiring good data. We conclude this part of the booklet with a
brief review of some other, less frequently used spectrometers (Chapter 10).

The third part of the booklet deals with the nuts and bolts of planning and an-
alyzing a successful neutron scattering experiment. Chapter 11 not only deals with
selecting the best instrument for the job, but also deals with the sample environment
that needs to be selected, and it lists the various supporting measurements that need
to be performed in order to have he best chance that the measured data will be able
to be fully analyzed, free from unwanted signals and experimental artifacts. Chapter
12 describes how to analyze data during and after an experiment, and how to avoid
certain pitfalls.

The appendices that follow these parts detail common procedures and provide a
bit of a physics background. The procedures are most useful in planning and analyzing
experiments, but they have been relegated to appendices as they stand in the way of
understanding the concepts behind the neutron scattering technique. The last part of
this booklet contains a description of experimental modules particular to the IGERT
course. These modules are not helpful to readers that are not course participants.

We would also like to draw the readers attention to multiple texts and textbooks
that are available to learn more about neutron scattering. The following is our se-
lection of these texts. Our selection is based upon how closely these texts match the
(anticipated) interest of the IGERT participants; as such, the many omissions from
this list do not reflect our opinions of these books, no slight was intended in any of
our choices.

Physics angle:

• G.L. Squires: Introduction to the Theory of Thermal Neutron Scattering (Dover
publications, 1996)

• Steven W. Lovesey, Theory of Neutron Scattering from Condensed Matter, Vols.
1 and 2 (Clarendon Press, 1984)

• Gen Shirane, Stephen M. Shapiro, John M. Tranquada: Neutron Scattering with
a Triple-Axis Spectrometer (Cambridge, 2002)

• G.E. Bacon: Fifty Years of Neutron Diffraction (Hilger, 1987)

• Albert Furrer, Joel Mesot and Thierry Strässle: Neutron Scattering in Condensed
Matter Physics (World Scientific, 2009)
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Biology angle:

• Chick Wilson: Single Crystal Neutron Diffraction from Molecular Materials (World
Scientific, 2000)

• S.J. Perkins: High Flux X-ray and Neutron Solution Scattering, in Methods in
Molecular Biology Volume 22, C. Jones; B. Mulloy; A.H. Thomas, editors (Hu-
mana Press, 1994)

• Neutrons in Biology, edited by Schoenborn and Knott (Plenum 1996)

Chemistry angle:

• G.E. Bacon: Neutron Scattering in Chemistry (Butterworths, 1977)

• B.J.M. Willis: Chemical Applications of Neutron Scattering (Oxford University
Press, 1973)

• R.H. Ottewill, Small Angle Neutron Scattering, in Colloidal Dispersions, J.W.
Goodwin (editor), Special Publication No. 43, Royal Society of Chemistry, 1982

Books accompanying neutron scattering schools:

• Neutron and Synchroton Radiation for Condensed Matter Studies, Baruchel ed.
(Hercules school, Springer Verlag 1991)

• R.J. Newport; B.D. Rainford; R. Cywinski (editors): Neutron Scattering at a
Pulsed Source (Adam Hilger, 1988)

Popular reference articles:

• Fundamentals of Neutron scattering by Condensed Matter, R. Scherm, 1972.

• Neutron Scattering: A Primer, Roger Pynn.

• The SANS Toolbox, Boualem Hammouda.





Part I

The basics

This part of the booklet establishes the connection between interference phenomena
and neutron scattering. Chapter 2 is intended for readers who do not have a physics
background. Chapter 3 describes the some of the properties in the neutron that are
relevant to neutron scattering. Chapter 4 deals with how to make the connection
between the number of scattering events (counts) in a detector and the microscopic
structure and motion of the sample that we stuck in the beam of neutrons.
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Interference and Neutron Scattering

Interference takes place when two waves are in the same location at the same time.
These two waves can help each other, resulting in an amplified effect, or they can
negate the effects of each other, resulting in a diminished effect. All waves do this,
whether they be sound waves, light waves, waves in the ocean or waves in your bath-
tub. Under special circumstances, two waves can completely cancel each other; we
refer to this situation as destructive interference. At the other extreme, two waves
can help each other to the fullest extent possible; we refer to this situation as con-
structive interference. Thus, the usage of the term interference in waves differs from its
usage in our everyday language where it is always meant to signify a reduced outcome.

Looking at waves in water provides a visualization of what we just mentioned in
words. Imagine a surface wave that is rolling up against a wall with two openings in
it as shown in Fig. 2.1. The water in the two openings is put in motion when the
incoming wave hits it. As a result, the two openings will now act as the sources of two
new waves, and these two new waves will spread outwards while putting the surface of
the water in motion. However, these two new waves will occupy the same region of the
water, and therefore, we will observe an interference pattern. Note that one can easily
create one’s own interference pattern by sitting in a bathtub, sticking one’s hands in
the water and moving them about in a repeated fashion.

The resulting interference pattern is easy to understand. Pick any point in the
water behind the two openings. The water at this point will be subject to one wave
trying to move it in a particular fashion, and another wave trying to do what the
other wave wants it to do. If both waves are trying to do the same thing at the same
time, then we will observe an amplified effect. Imagine that one wave was trying to
move the water up, and the other wave was doing the same thing. Then, as a result,
the water will be moved up quite a bit more. The two waves’ combined action results
in a higher amplitude of the up and down motion than what an individual wave can
accomplish. We mention up and down motion because the same would hold for when
one wave is trying to create an indentation in the water, and the second wave is doing
the identical thing, resulting in a deeper indentation. Thus, this type of interference
is characterized by an increased amplitude of the overall motion.

Whether two waves help each other, or try to cancel each other depends on how
long it took the individual waves to get to the same point in the water. For instance, if
we look at water that is located at an identical distance from both inlets, then the two
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Fig. 2.1 Water waves making it through two openings will create an interference pattern as

demonstrated on this photo from Google Earth, and as explained by Fabrizio Logiurato in

Physics Education 47, 73 (2012).

waves will take identical times to reach this point. As a result, the two waves will try
to move the water in an identical manner, and we witness constructive interference.
Conversely, we can have points in the water that are slightly closer to one opening
than to the other, and we can even find points where the second wave took so much
longer to arrive that when it finally gets there and tries to push the water up, that the
first wave has already moved to the point where it is trying to push the water down.
At these points, the water will be pushed up just as much as it will be pushed down.
We call this destructive interference since the two forces exactly cancel each other, and
the water will not move at all. This situation is shown in Fig. 2.2.

There is more than one region where we can witness constructive and destructive
interference. For instance, there will be points that the second wave took so long to
reach, that by the time this second wave gets ready to try to push the water up, the first
wave is once again trying to do the same thing. The first wave already went through
a cycle of (pushing the water) up and down, and now it is ready to push the water up
again. Clearly, this is also a situation where the two waves will amplify each other. The
same holds true for when the second wave arrives two cycles later, or three, or four etc.

By the same token, it can happen that the second wave arrives 1/2 a cycle later,
or 1 1/2 cycles later, or 2 1/2 etc. These are all situations where we would observe
complete cancelation of the two waves, regions of destructive interference. All this can
be seen in Fig. 2.2. Of course, there are also regions that are neither here nor there;
at these regions the water will neither be tranquil, nor will it show full amplification.
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Fig. 2.2 Water waves originating from two sources interfere with each other and create a

distinct pattern. The resulting wave pattern has regions where the waves help each other

(dark for regions where the water is pushed down, and light for regions are where the water

is pushed up), as well as regions where the waves cancel each other (the radial spokes where

the water does not move at all). The red lines depict how two waves can exactly cancel each

other at a point (where the black lines intersect for this example). Source: ’Ripple Tank’

simulation software.

The locations at which we find complete amplification (and cancelation) are deter-
mined by how much longer one wave traveled to reach this location than the other.
This depends both on how fast the wave is going, and on how far apart the two open-
ings are since the latter determines how much farther one point in the water is from
one opening than it is from the other. These are pretty obvious statements, but they
form the basis of the theory of scattering.

In scattering experiments one observes (measures) the interference pattern, and
from this one tries to figure out what the spacing is between the two openings. For
instance, one can well imagine that by observing (Fig. 2.2) the regions where there is
maximum amplification of the two waves, that one can identify which of these regions
of maximum amplification correspond to the two waves having traveled an identical
amount of time, which regions correspond to the second wave lagging behind the first
wave by one cycle, etc. Then provided one knows how fast these water waves were
traveling, one can deduce- with the aid of some math- what the spacing must have
been between the two openings.

In real scattering experiments one does not use water waves, of course, but rather
one uses light waves or- as we shall see- neutrons. The distance between the two open-
ings in the wall then becomes the spacing between two atoms, a number that tells
us something about the structure of our material. We can even have many atoms ar-
ranged in some periodic structure, the equivalent of multiple holes in the wall. As long
as we study the ensuing interference pattern carefully, we can deduce all the relevant
spacings between the atoms. It requires some more math, but the principle behind
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this deduction is identical to figuring out the distance between the two inlets in Fig.
2.2.

Before we look at the interference pattern in even more detail, we have to ask our-
selves the question: what do neutrons have to do with this? We can see an interference
pattern emerging when one uses light waves, or even very special light waves such as
xrays, but neutrons are particles, so what is the relevance of interference to neutron
scattering? The answer to this is the most remarkable discovery of the 20th century,
namely that neutrons (and all particles) can, and do, behave like waves.

Neutrons are undeniably particles. Whenever we detect one, it looks and smells
like a particle. They arrive one by one, and we can even make our detectors produce
a satisfactory clicking sound when they arrive. The same holds for all little particles
in nature, from electrons to protons, from atoms to buckyballs. Yet, according to an
uncountable number of experiments, whenever we do NOT look at a particle, it be-
haves like a wave. It turns out to be a law of nature: when we look at a particle,
then it is a particle, and when we do not look, then it is a wave. Admittedly,
this sounds bizarre, but it is what nature does. In here, we just take this law as an
established experimental fact and we refer the reader to the popular literature to learn
more about this highly counterintuitive and unsettling 20th century law of physics.

According to this law of nature, neutrons behave like waves when we do not look,
such as when they are flying through a material. And when they behave like waves,
they will suffer from interference effects like any old wave, and we can use the interfer-
ence pattern to learn something about the material itself, such as the spacings between
atoms. This is exactly what we do when we perform neutron scattering experiments.

Neutrons are waves. In experiments we can control the speed of these neutron
waves, which in turn will make our interference pattern sensitive to small distances
(such as interatomic distances for fast waves), or to large distances (such as the size of
a protein for slow waves). It is this range of length scales that make neutrons such a
versatile probe of matter. In addition, the neutron- having no electric charge- has no
problem penetrating deeply into all sorts of materials. This makes the technique very
useful for studying the bulk properties of materials rather than probing what is hap-
pening at the surface. Also, how easily a neutron is scattered by the atoms depends on
what the atom is; this makes it possible to identify not only how far apart the atoms
are, but also to identify which atom sits where. Of course, there will be some math
involved, but this is an issue that has been resolved and should not concern us too
terribly much (at this point).

The converse to our new law also holds true: waves are particles. In particular,
when we detect light, we detect it one little bit at a time. Therefore, light is made
up of particles when we look, and these particles are called photons. This is at the
basis of the photo-electric effect, which in turn is at the basis of every automatic toi-
let flusher and door opener. The upside of all this is that whatever we learn about
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Fig. 2.3 In scattering experiments, we deal with an incoming wave, and an outgoing wave.

The wave length associated with the waves is given by the distance between the vertical

lines, the wave crests. The incoming (moving from left to right) and outgoing (moving at an

angle) waves give rise to an interference pattern that shows up as the white, almost horizontal

bands. The distance between successive white bands corresponds to what is called the probing

wavelength and which has been plotted in the figure as the sinusoidal shape. The probing

wave length λprobe depends both on the wave length of the plane waves, and on the scattering

angle. The latter is illustrated in the figure by comparing a scattering angle of 5o (left half

of figure) and 10o (right half).

neutron scattering in terms of interference, we can also directly apply it to light scat-
tering, and vice versa. All the basic concepts are the same between the two techniques.

2.1 Interference and Scattering

In a scattering experiment, a wave can even interfere with itself. This can be seen as
follows. Picture a wave that is about to be scattered by the individual atoms in a piece
of material. The wave actually occupies a region of space, it is not restricted to be at
a particular point. As such, the wave that has not been scattered yet will occupy the
same space at the same time as the wave that is being scattered by the atoms. This
incoming wave and the scattered wave will now interfere with each other, ultimately
determining under what angle the scattered wave takes off.

We do not have to look into the details of the scattering process to understand
what is probed in a scattering experiment; we can simply look at pictures of waves.
Since a neutron behaves like a wave, both when it is incident on the sample and when
it is scattered by the sample, we can depict a scattering event by drawing an incoming
and a scattered wave. This is shown in Fig. 2.3.

As a note up front, this sketch leaves out the details of the scattering process as
far as it concerns individual atoms. However, these details are not important for un-
derstanding the basics of a scattering experiment. In the left panel of Fig. 2.3 we see
a wave traveling from the left to the right. The wavelength is given by the distance
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between the vertical lines. Also shown is a wave that (somehow) scattered and that
is now heading for a detector that is placed at an angle of 5o with respect to the di-
rection of the incoming wave. This scattered wave has an identical wavelength as the
incoming wave. This is the situation that corresponds to the neutron being scattered
by the sample without gaining or losing any of its energy; it merely changes direction.

The incoming and the scattered wave create an interference pattern, resulting in
the bright and dark regions shown in Fig. 2.3 and known as a moiré pattern. The
orientation of the bright and dark bands is such that they are neither parallel to the
incoming nor to the scattered direction; rather, it is somewhere in between. For the
case shown in the figure where the neutron neither gains nor loses energy, the direction
of the bands is exactly half way in between the incoming and the scattered direction.

The distance between the bands, such as the prominent white bands visible in the
figure, is what we call the probing wavelength λprobe. It is on this length scale that
we are probing our sample in the scattering experiment. During the course of the
scattering event depicted in this figure, the wave crests of the incoming and scattered
wave will travel along the direction of propagation of the neutron, and as a result, the
white bands will also be moving. The direction of propagation of these bands is per-
pendicular to the bands themselves. All this is indicated in the figure by the sinusoidal
shape which shows that the probing wave length is associated with a probing wave
that travels through the sample in the direction shown in the figure.

Note that the probing wavelength is not the same as the wavelength of the incom-
ing wave; in the case shown in the figure, it is much larger. The probing wavelength
does depend on the incoming wavelength- the larger the incoming wave length, the
larger the probing wavelength- but it also depends on the angle between the incoming
and the scattered wave. This is illustrated in the right hand panel of figure 2.3 where
we doubled the angle between the incoming and the scattered wave. As can be seen
in this particular example, the probing wavelength shortened as a result.

When we are studying a particular material with the aid of neutron scattering, we
try to ensure that the probing wavelength (roughly) matches the length scale of the
objects we are interested in. We will require exact matches for materials that have
a periodic (repeating) structure, such as crystals, and we require somewhat looser
matches for materials that only have a repeating structure on short length scales. Ex-
amples of the latter are liquids where the atoms do not all have the same distance to
their neighbors, or polymers spread out in a film.

These sketches already illustrate that there are limitations to the technique of neu-
tron scattering when it comes to studying structures that require very large probing
wavelengths. Either one has to look for scattered neutrons at very small scattering
angles, or one has to use incident waves that have very long wavelengths. The former
runs into problems because not all neutrons are being scattered, and one cannot distin-
guish easily anymore between those neutrons that have been scattered, and those that
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Fig. 2.4 When the interference pattern produced by the incoming wave and outgoing wave

corresponds to a natural distance in the sample, then this will result in constructive inter-

ference. In here, if the probing wave length λprobe exactly matches the lattice spacing d of

the solid, and if the sample is oriented in just the right way as shown in the figure, then the

scattering process depicted might actually occur and a detector placed in the direction of

the outgoing wave can detect a scattered neutron (or photon in xray scattering). The solid

lines depict that under these scattering conditions the radiation appears to bounce off of a

mirror-like surface formed by the array of atoms.

simply made it through the sample unaffected. The latter ends up being problematic
because when neutrons are produced inside reactors, they typically have wave lengths
of about 1 Å. It is possible to cool down these neutrons, thereby stretching their wave
length, but this is not a minor undertaking. Because of these two limitations, neutrons
are not very good at probing length scales above ∼ 100-1,000 Å. Luckily, this upper
limit represents such a large length scales that we can use different (non-neutron scat-
tering) techniques to probe our materials.

Leaving these limitations aside for the moment, let us look at an example of neu-
trons being scattered by a crystal. A crystal is characterized by atoms lined up in a
periodic structure. When a crystal is hit by a neutron wave (which is NOT the same
as a wave of neutrons), then every atom will act as a center from which a scattered
wave emerges. This is very similar to the case of the two holes in the wall in Fig.
2.1 where each opening acts as the source of a new wave. If all these atoms are ex-
posed to the neutron wave in the same way, then all these individual scattered waves
can add up to a viable total wave, and the neutron will actually end up being scattered.

The above mystery language is clarified in Fig. 2.4. In this figure, the distance d
between the atoms and the orientation of the crystal is such that the atoms are exactly
located corresponding to the spacings between the white bands of the interference
pattern:
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λprobe = d.

This equation is referred to as Bragg’s law. What this equation implies is that if one
atom emits a scattered wave, then any of the other atoms also emits a scattered wave
that will be trying to do the same thing as the other scattered waves when the waves
meet up. Compare this again to the case of interference in water. When two waves
meet up that are trying to push the water in the same direction, then these two waves
help each other. The same is shown in Fig. 2.4. The distances and orientations of ev-
erything involved is such that when scattered waves originating from individual atoms
meet up, then they help each other and they will give rise to the nice big scattered
wave that can be seen leaving the sample scattered under a 10o angle.

Even if this language (or the math behind it) is not clear, it should be clear that
one can expect something special to happen when all the atoms shown in Fig. 2.4 line
up with the interference bands. In this figure, a detector located at an angle of 10o

with respect to the direction of propagation of the incoming waves will detect many
scattered neutrons. Should this detector be placed at an angle of 9o, then it will not
detect any scattered neutron waves. It will not detect any, because at such an angle the
white interference bands would not have corresponded exactly to the distance between
the atoms.

The above description tells us how we can actually determine the interatomic
distances between atoms. We can stick our crystal in a beam of neutrons, and get
ourselves a detector. Then we can move our detector around, positioning it by moving
it from small angles to large angles as shown in Fig. 2.5, to see if we detect (m)any
neutrons being scattered. Likely, we will not find any. But then we can rotate our
crystal a little bit and try again by moving our detector around. We repeat this
procedure until we find an orientation of the crystal and a position of the detector
for which we do notice a lot of scattering events. When this happens, then we must
have the situation depicted in Fig. 2.4. Given this, we can then calculate the distance
between the atoms based on the angle where our detector measured the most scattering
events, and based upon the wavelength λ of the neutron (the distance between wave
crests in Fig. 2.4). We can capture this in the following representation of Bragg’s law
(see also exercise 2.1):

λprobe =
λ

2 sin(θ/2)
= d;λ = 2d sin(θ/2). (2.1)

This is scattering in its most basic and most readily interpretable form. We can
take it a step further by, for instance, having the crystal consist of more than one type
of atom, or by melting the crystal so that the periodic structure still looks ordered on
short length scales, but it will look like the familiar liquid disorder on longer length
scales. Under such conditions the neutrons will still be scattered, but not as well as
before and not all at the same angle; therefore, the results will be harder to interpret.
But they still can be interpreted and from a conceptual point of view, they are not
all that different from the pure case shown in Fig. 2.4. For future reference, the case
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Fig. 2.5 In order to determine the interatomic spacing of a crystal, we stick the sample in

the neutron beam (red arrow). We then move our detector around (green box in the top left

panel) and see if we count any neutrons anywhere. When we fail to find the expected counts

(the neutrons can be ’seen’ to fly through the sample), then we rotate the crystal a little

bit (top right panel) and we move the detector around again. We repeat this procedure until

we have rotated the crystal to just the right angle (bottom left panel) that would scatter

neutrons (red arrow) into the detector when we position it at just the right angle (in this

example at a scattering angle of approximately 40o). The situation in this bottom panel must

then correspond to satisfying the constructive interference condition sketched in Fig. 2.4.

shown in Fig. 2.4 is referred to as Bragg scattering.

There is one more thing that we can already learn about scattering by looking at
interference patterns such as the one in Fig. 2.4, and this has to do with the amount of
momentum transferred from the neutron to the sample in a scattering event. Looking
at Fig. 2.4, we see that the neutron changed direction just as if the neutron bounced
of a wall formed by the atoms within the crystal. And, as is the case when bouncing a
ball of a wall (at an angle or not), the momentum that will be transferred to the wall
is in the direction perpendicular to the wall. This will be important when we study
the details of the movement of the atoms within samples. This picture (Fig. 2.4) shows
how the neutron will impart momentum onto these atoms, in what direction it will
apply a force so as to make these atoms move.

The amount of momentum transferred depends on the scattering angle. Using the
analogue of a ball bouncing off a wall after being thrown at the wall under a certain
angle, it is easy to visualize that the least amount of momentum will be transferred
when the scattering angle is very small, and that the most momentum is being trans-
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ferred when the scattering is such that the neutron bounces back in the direction it
came. This should be intuitively clear; if you want to knock over an object, you throw
the ball straight at it, not under a glancing angle.

Combining these (obvious) considerations with how the interference pattern changes
(Fig. 2.3) with changes in scattering angle, we see that a large probing wave length
corresponds to small amounts of momentum being transferred. Decreasing the probing
wavelength goes hand in hand with increasing the amount of momentum transferred.
Therefore, small angle scattering usually involves small amounts of momentum trans-
fer. This represents a limitation of the technique of neutron scattering as sometimes we
would like to transfer large amounts of momentum while still scattering under small
angles. This is simply not possible with neutrons.

In summary, when doing and interpreting a neutron scattering experiment, it is
useful to keep pictures such as Fig. 2.3 in mind in order to keep track of what is
happening in real space and in real time. As we will see in later chapters, in neutron
scattering one typically only keeps track of how much momentum is transferred, and
of how much energy is transferred. This bookkeeping works well in most cases, how-
ever, a mental image of what is going on in terms of interference patterns makes it
easier to understand what will happen when we change something to the experiment,
such as increasing the neutron wavelength or trying to obtain scattering data at small
scattering angles.

2.2 Exercises

Exercise 2.1

Show that the distance λprobe between the white bands in Fig. 2.3 is given by:

λprobe = λincoming/2sin(θ/2).

In here, θ is the angle under which the neutron is scattered, and λincoming is the wave
length of the incoming neutron given by the distance between the vertical wave crests
in the figure.

Exercise 2.2

What is the maximum amount of momentum that can be transferred from the
neutron to the sample (when the incoming neutron carries 1 unit of momentum)?

Exercise 2.3

The water waves shown in Fig. 2.1 effectively go around the corner once they make
it through the openings. This is a common characteristic of all waves, not just water
waves. What are some other examples of waves going around the corner, such as light
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waves and sound waves?

Exercise 2.4

When we use two tuning forks that are tuned to almost the same frequency (ν1

and ν2), then the two sound waves will interfere. We will hear an overall sound wave
with frequency (ν1 + ν2)/2, and on top of it we will hear a beat. This beat affects the
amplitude of the combined sound wave, and the beat frequency is given by (ν1−ν2)/2.
What would be the equivalent in scattering of hearing a beat to the signal?



3

Characteristics of the Neutron and
What Can Be Measured

This chapter and the next chapter (Chapter 4) contain very similar information as pre-
sented in the popular articles by Roger Pynn and Reinhard Scherm (listed in Chapter
1). We strongly encourage the reader to look through these excellent treatises.

The neutron interacts with the nucleus of an atom, so it can measure where the
nuclei of the atoms are in a properly designed experiment. This is called neutron
diffraction. If nuclei move around, such as when the atoms are participating in a
sound wave, then the neutron will experience this changing in position of the nuclei
provided the neutron hangs around for long enough to notice any perceptible change
in position. This is called inelastic neutron scattering.

The neutron is also a little magnet, so when it encounters other magnets such as
atomic magnetic moments, it will react accordingly because it feels a magnetic force.
In a well designed diffraction experiment, the positions of the atomic magnets can be
determined by looking at the scattering pattern of the neutron. If the atomic magnets
are changing orientation, such as in a spin wave, then the neutron is affected by this
movement, again provided the neutron hangs around for long enough.

These basic notions allow us to calculate what can be measured, and how to de-
sign an appropriate experiment. Let us look at a few examples. We will start with the
easiest thing to visualize, and that is the motion of the atoms. A good rule of thumb
is to try to ensure that the speed of the neutrons is of the same order of magnitude
as the speed of the motion one is trying to map out. Thus, if one is studying the
behavior of sound waves in a material, then the neutron should be traveling at a speed
comparable to the sound wave velocity. If one tries to measure the slow diffusion of
a particle through a liquid, then one should use neutrons that do not go very fast at all.

The reason for this (approximate) speed matching is not too hard to see. A neutron
is a wave, and what we see is an interference pattern. Therefore, if we want to measure
changes (in atomic positions) that take place over a certain amount of time, then we
have to ensure that the neutron is present both at the start of the event, and at the
end of it.

For instance, if we look at a sound wave, then the neutron has to be around for a
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Fig. 3.1 The deuterium cold source at the OPAL reactor in Sydney, Australia (Source:

www.ansto.gov.au). Helium is used for cooling the deuterium, the deuterium is used to slow

down the neutrons.

time comparable to half the period of the sound wave (the time it takes to go from
maximum to minimum amplitude). If the neutron hangs around for much longer, then
we would simply measure the average of many up and downs and all the in-betweens,
washing out the details of the information we are interested in. Conversely, if the neu-
tron only sticks around for a much shorter amount of time, then there hardly will have
been any changes in the positions of the atoms, and no interference pattern will be
produced that carries any information about changes in positions that take place after
the neutron has left the area.

The above immediately explains why the study of the motion of large structures
(such as present in biological systems) takes place using cold source neutron spectrom-
eters. Large objects tend to move slowly, and any motion on biological time scales takes
forever to be noticeable (from the point of view of a neutron). Typical neutrons that
come out of a reactor travel at speeds of several thousands of meters per second (cor-
responding to the temperature of the water that surrounds the core of a reactor),
implying that they will only spend about 1 picosecond in an area the size of 50 Å.
Should something not appreciably change until one waits for at least 10 nanoseconds,
then nothing will be measured on a 1 ps timescale. The trick around this is to slow
the neutrons down.

In order to slow neutrons down, one makes the neutrons collide with cold atoms so
they can give up some of their energy. Only after they have given up their energy will
they be sent down a beam tube to be used in experiments. This giving up of energy
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Fig. 3.2 The distribution of speeds v of neutrons [a.k.a. flux φ(v)] that make it down a

beam tube is strongly dependent on the temperature of the moderator. Shown are the same

number of neutrons for the temperatures indicated in the figure, calculated using a Maxwellian

velocity distribution φ(v) ∼ v3e−mv
2/2kBT .

is done in a cold source, which simply is a container with hydrogen or deuterium con-
taining material kept at a cold temperature. When neutrons collide with light nuclei,
they give up a substantial fraction of their kinetic energy with the result that after
about ten collisions the neutrons will have the same temperature as the surrounding
material. We say that the neutrons have been moderated. An example of such a mod-
erator is shown in Fig. 3.1.

As a concrete example, when the hydrogen material is held at 10 K, then a typical
neutron will emerge traveling at a speed of 500 m/s (see Appendix A and Eq. A.1).
This is still fast, but considerable better than 2,000 m/s. Moreover, the neutrons will
emerge from the cold source with a range of energies and speeds, and there will be
plenty of neutrons that travel at speeds less than 200 m/s. This is good, because it
implies that it would take such a neutron 25 picoseconds to traverse an area the size of
50 Å. Therefore, we can follow much slower processes in cold neutron scattering than
we could with thermal neutron scattering.

There is an additional consideration. Namely, the scattering angle also (partially)
determines the time scale of the measurement. Looking back at the interference pat-
terns shown in Fig. 2.3, we see that the probing wave length depends on both the wave
length (speed) of the neutron, and on the scattering angle. The smaller the scattering
angle, the larger the probing wavelength. This probing length is directly linked to the
size of the objects that a neutron can see.

Perhaps this size business is best phrased as a question, namely: how big is a neu-
tron? We cannot think of the neutron as a tiny ball in a scattering event since a tiny
ball would not give us an interference pattern. We have to think of the neutron as
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Table 3.1 Approximate wave lengths and speeds of neutron. Use Eq. A.1 for exact conver-

sions.

speed [m/s] wavelength [Å] Energy [meV] time to traverse 5 nm

200 20 0.2 25 ps

400 10 0.8 12.5 ps

1000 4 5 5 ps

2000 2 20 2.5 ps

4000 1 80 1.25 ps

an incoming wave and a scattered wave with an interference pattern originating from
the region where the scattering takes place. The size of this region is effectively the
size of a neutron during a scattering event. The neutron cannot glean information
about particles that are larger than this region, and it cannot tell us anything about
the dynamics of the particles in this region if the neutron has already left the region
before noticeable changes happen.

The size of this region of overlap between the incident and final neutron wave can
be estimated through geometry, or by applying Heisenberg’s uncertainty principle. Ei-
ther way, it yields that the region of overlap (and therefore the size of the neutron
during a scattering event) is proportional to ∼ λ /sin(θ/2), with θ the angle by which
the neutron is scattered, and λ the wavelength of the neutron. For small angles this
yields that the size of the neutron is proportional to the wave length of the neutron
divided by the scattering angle λ/θ. This immediately tell us that if you want to study
large molecules, you have to do small angle scattering, preferably using neutrons with
long wave lengths (cold neutrons).

The bottom line is that the larger the objects you are interested in, the smaller
your scattering angles will have to be, combined with using neutrons of long wave
lengths (cold neutrons). The slower the dynamics you are interested in studying, the
slower the neutrons have to be moving that you are using.

As to the specific characteristics of the neutron, we can summarize them in a table,
but they are just numbers that give us the prefactors in how big a neutron is when
it is scattered at a certain angle, and how likely it is that a neutron is scattered by a
particular atom. These numbers can be put in recipes, but we do dwell on them here
as they do not add to the basic understanding of neutron scattering. Instead, we look
at the overall concepts that go into neutron scattering.
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3.1 Why We ♥ Neutrons

The neutron has quite a few characteristics that make it very well suited to be used as
a probe for the investigation of the structure and dynamics on atomic length scales.
In no particular order, they are the following. The neutron, having no electric charge,
only interacts very weakly with other materials. This means that a neutron is more
likely than not to pass through a material. This is an advantage because this implies
that materials are almost uniformly illuminated by neutrons; neutrons can scatter
from anywhere in the sample, not just from the surface as is the case in conventional
light scattering. For this reason, we call neutrons a bulk probe.

A major advantage of neutrons interacting weakly with materials is that they can
easily penetrate a cryostat, furnace, or pressure cell used to house the sample and keep
it at the desired environmental conditions. This allows for studying of the materials
under non-ambient conditions. Clearly, this is essential if one would like to study, for
instance, the superconducting state of a metal that only manifests itself at low tem-
peratures.

A major disadvantage of neutrons interacting weakly with materials is that in gen-
eral one requires a substantial amount of material, typically of the order of 0.1 cm3. It
is not always possible to obtain this much material, or obtain the amount of material
in the desired state (such as a single crystal as opposed to a powder, a collection of
very small grains).

Another advantage of neutron scattering is that the likelihood that a neutron is
scattered by a particular atom depends not only on the type of atom, but also on the
type of isotope. Moreover, the likelihood is not such that heavier atoms are more likely
to scatter neutrons than light elements. The latter is the case in xray scattering where
it is very easy to scatter photons by the heavier elements, but much more difficult to
scatter from the lighter elements. In particular, one can easily study hydrogen con-
taining samples using neutron scattering, but hardly at all by using xray scattering.
This makes studying (some details of) biological materials using xray scattering very
difficult.

The fact that each individual isotope has a different scattering power for neutrons
allows for more versatility. For instance, if one is interested in the behavior of a par-
ticular type of atom in a material, but not so much in the behavior of another type,
one can choose suitable isotopes to bring one type of atom to the fore at the expense
of the other. This is most important in biological materials where we can vary the
scattering strength of the hydrogen by substituting deuterium in place of hydrogen.
We can even choose mixtures of hydrogen and deuterium in such a way that all the
other non-hydrogenous atoms are emphasized. This is called contrast matching and it
is what makes neutron scattering such a powerful tool for studying biological materials.

In (non-magnetic) neutron scattering, the neutrons are actually scattered by the
nuclei of the atoms, not by the clouds of electrons as is the case for light scattering.
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By extension, if we combine neutron and xray scattering experiments, then we learn
complementary information, such as the shape of the electronic clouds in combination
with the positions of the nuclei. This tells us about how well atoms are bounded
together, and in what way.

3.2 Two Types of Scattering: Coherent and Incoherent

There is one more difference between neutron scattering and light scattering, a dif-
ference which sometimes is a big headache, and which at other times can be a big
advantage. In our interference pictures in the previous chapter we assumed that all
the atoms react the same way to being struck by a neutron. This is not always correct.
For instance, when we have a crystal made up of one species of atoms, but of different
isotopes of this atom, then from a neutron scattering point of view we have a mixture
of scattering centers. When this happens, not all atoms react in the same way to being
struck by the neutron wave, there will be some variation. When isotopes are distributed
randomly (as is the case in most materials), then there will also be a random com-
ponent to the way a neutron is scattered. This has a noticeable effect on the scattering.

When there is a random component, then we will lose some of our interference
pattern. After all, if the atoms that were placed at identical spots in the interference
pattern of Fig. 2.4 do not respond in identical ways, then the individual scattered
waves cannot add up in a perfect way either. As a result, our interference pattern (and
as a result our measured scattering) will be washed out a bit. How much it will be
washed out depends on the degree of randomness introduced. For instance, if the nat-
ural distribution of isotopes is such that 99% of all atoms are made up of an identical
isotope, then our interference pattern will only be mildly affected. By the same token,
if we have many different isotopes, but all isotopes more or less scatter neutrons very
similarly, then also not much will happen.

However, if we have many different isotopes that scatter quite differently, we could
potentially reach the case where we do not see a reflection of the interference pattern.
It is as if the atoms were not located at the positions corresponding to the white bands.
In the case of such randomness, we cannot say much about what one atom is doing in
response to its neighbor is doing some up and down motion. Such information would
no longer be contained in the interference pattern.

This randomness does not mean that neutrons are no longer being scattered, it only
means that we cannot learn about the relative positions and motions of neighboring
atoms. However, we can still learn what individual atoms are doing. After all, when
an individual atom scatterers a neutron, then changes position and again interacts
with the neutron wave, then both interactions will be done by the same atom, and
therefore, we can expect the ensuing interference pattern to contain information about
the position of such an individual atom relative to the positions of the same atom a
short time earlier: we can follow the movement of individual atoms in this way.
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When all atoms scatter in the same way, we call it coherent scattering. When
we can only follow what individual atoms are doing, we call it incoherent scattering.
Thus, coherent scattering tells us about relative positions of atoms and collective mo-
tions such as sound waves, incoherent scattering tells us about the individual motions
of atoms such as diffusion through a liquid. A simplified way to remember the dif-
ference between the two is the following. When someone opens a bottle of perfume,
you hear the unscrewing of the cap. This sound wave is a collective effect and it can
be studied using coherent neutron scattering which would tell us what neighboring
atoms are doing in response to being pushed. Conversely, when you smell it, it means
that a molecule actually made it to your nose. This individual motion can be studied
by incoherent neutron scattering where the neutron would scatter from the aromatic
molecule in one position, and some time later by the same molecule in a different
position. Clearly, to follow this you must ensure that the neutron goes slowly enough
so that it sticks around for a long enough period of time for the motion of the stinky
molecule to actually take place.

Interestingly enough, even collections of identical isotopes can give rise to incoher-
ent scattering. This has to do with the actual mechanism through which a neutron is
being scattered by a nucleus. Without going into details at this point, when a neutron
is scattered by a nucleus, it fleetingly forms a compound nucleus with the protons and
neutrons that are already there. The likelihood that such a compound nucleus will
be formed determines how likely it is that a neutron will be scattered. In turn, the
likelihood that such a compound nucleus can be formed, even fleetingly, depends on
how many neutrons are already there (different isotopes), and on what these neutrons
are doing. The latter has to do with the Pauli exclusion principle, but we can contort
it in here to state that the neutron itself is a tiny magnet, and that the nucleus of an
atom also can be a tiny magnet. Depending whether these magnets are lined up, at
an angle, or pointing in the opposite direction, it will be more difficult or more easy
for a compound nucleus to form.

How does this give rise to incoherent scattering even if there is only one isotope?
If the magnets formed by the nuclei point in random directions (and this is what
nuclei actually do), then sometimes these magnets will be lined up with the neutron’s
magnetic poles, and sometimes not. This introduces a randomness, and applying the
same reasoning as we did earlier, this will result in incoherent scattering. After all, if
the magnets corresponding to neighboring nuclei are not lined up, then neighboring
nuclei will not scatter the neutron in identical ways.

Not all isotopes give rise to incoherent scattering. Namely, if the nucleus that the
neutron is trying to scatter from is not a magnet, then there is no preferred orienta-
tions, and therefore all neutrons will be scattered in an equal manner. Nuclei that are
not magnetic have that the magnetic moments of the protons and neutrons in them
exactly cancel each other. For instance, helium-4 has two neutrons and two protons in
its nucleus. The two protons have opposite spin (direction of magnetic poles) to each
other and thereby cancel each other, and the same holds true for the two neutrons.
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As a result, the nucleus of helium-4 is non-magnetic and all scattering is 100% coherent.

Xray scattering is always coherent scattering. This is because it is the electrons
around the nuclei that scatter the photons, and one electron has an identical scatter-
ing power to any other electron. Thus, xray scattering will neither show an isotope
effect (since all isotopes have the same number of electrons), nor any effect due to
what happens inside the nucleus (since the nucleus is not what scatters the photons).
Therefore, incoherent scattering is solely restricted to neutron scattering experiments.

Why can incoherent scattering be both an advantage and a disadvantage? On the
one hand, if you are interested in the collective motion of atoms, then you do not
want the sought-after signal to be overwhelmed by incoherent scattering that contains
no information about collective motions. On the other hand, if you are interested
in what individual molecules are doing, for instance when they are locked up in the
cage formed by their neighbors and they are trying to escape this confinement, then
incoherent scattering is the way to learn about it.

3.3 Neutron Wavelength and Conversions

Neutrons behave like waves when we do not look, this is a fact of life. And neutrons
show diffraction effects just like any other wave when their wave length is comparable
to the size of the opening they are trying to get through. This is all very well, but how
big is the wave length λ of a neutron? This number can be determined by experiment.
We can simply measure the wavelength for a certain setup, like one where we already
know the size of the opening the neutron is trying to get through. Then we can change
the speed of the neutron to see how the wave length depends on the speed. And, we
can even repeat this experiment not just for neutrons, but for electrons and buckyballs.

The outcome of all these experiments is that the wave length of a particle is in-
versely proportional to the speed and to the mass of the particle. In other words, it is
inversely proportional to the momentum p = mv of the particle. The constant of pro-
portionality is called h, Planck’s constant. Thus, λ = h/p. This relationship was first
put forward by Louis de Broglie, and has been verified ever since for any particle we
can do experiments on. Interestingly, it also works the opposite way, we can calculate
the momentum of a photon of light given the wavelength of light. We rewrite the de
Broglie relationship as follows:

p = h̄q = mv =
h

λ
; q =

2π

λ
. (3.1)

In this equation, we have rewritten the momentum of a neutron as h̄q with h̄ =
h/2π. The units of q are inverse length, and q is often referred to as the wave number of
the neutron. When the results of most neutron scattering experiments are presented,
they are presented as a function of q, which we should read as a short hand notation
of the amount of momentum transferred by the neutron to the sample.
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Now that we have the relationship between momentum, speed and wave length of
the neutron, we can also express the kinetic energy of a neutron (E = mv2/2) in terms
of wave length etc. We show the conversions in Appendix A. One important factoid
is that if we were to double the wave length of a neutron, then we halve its speed.
At the same time, we cut down its energy by a factor of four upon doubling the wave
length. These considerations will become important when we consider higher-order
contamination of our (nominally) mono-energetic neutron beam.

3.4 Neutron Detection and Scattering Lengths

We can detect with great efficiency whether a neutron is scattered in a particular di-
rection by placing a detector at that position. A standard detector contains helium-3;
there are also other types of materials used in neutron detectors, such as lithium-6
and boron-10.

All the detection mechanisms in these detectors involve the capture of the neutron
by a nucleus. In other words, we detect the presence of a neutron through a nuclear
reaction. Nuclear reactions typically involve energy scales of MeV (million electron
volts). During a neutron scattering experiment, the neutron will emerge with a kinetic
energy of the order of meV (milli electron volts). This immediately tells us that our
detectors are not capable of telling us what the energy is of the scattered neutron, we
simply cannot detect a few meV in a reaction that involves a few MeV. For this rea-
son, if we are interested in the energy of the scattered neutron, we have to determine
this energy through other means before the neutron is detected. We will discuss this
further in the context of triple-axis spectrometers.

In the most commonly used detectors, tubes filled with helium-3, the neutron is
captured. The helium-3 nucleus does not actually turn into a helium-4 nucleus, rather
tritium is formed and a proton is released from the nucleus. This charged proton is
then detected by means of its ionization track. As a rule of thumb, we can more or
less treat a neutron detector as a black box and not worry about it any further. There
are some caveats which are further discussed in Chapter 9.

Neutron detectors employ isotopes which have a high cross section for neutron
capture. Helium-3 is a very good candidate, and the most commonly used detector is
a tube of 1” diameter filled with 10 bar of helium-3 gas. However, there is a worldwide
shortage of helium-3, and the price of it has increased tenfold over the past few years.
Alternatives are being investigated such as boron-10 detectors. It is likely that the
European Spallation Source (ESS) that will be constructed in Sweden will be using
alternative detectors by the time this new source becomes operational (in 2020).

This discussion brings us to the parameter b that we use to indicate how easily
a nucleus scatters a neutron. This parameter is referred to as the scattering length,
and we have tabulated them for most commonly used isotopes in Appendix B. The
scattering length is determined by a quantum mechanical scattering process involving
the nuclear force. Luckily for us, we do not have to understand the details of this
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process, we can simply take the scattering length as a number that has been measured
experimentally.

The scattering length is typically of the order of the radius of the nucleus rN , but
not identical to it. The fact that it is close to the radius of the nucleus makes sense
when we think of the nucleus presenting a target to the neutron of size 4πr2

N , the
quantum mechanical cross-section for a hard-sphere of radius rN . 1 But let’s not dwell
on details, our interpretation is such that the meaning of the scattering length is that
it is a measure of how effectively a neutron is scattered by a nucleus.

We have some conventions for calculating the cross-section σ that a nucleus presents
to a neutron based on the tabulated scattering lengths: σ = 4πb2. In Appendix C we
show, using quantum mechanics, why the scattering length has to be of the order of
the nuclear radius, and we also give an approximation on how to calculate scattering
lengths using a square-well potential. This clearly is only intended for those that might
be interested in such a topic, for everyday neutron scattering is suffices to simply look
up the scattering lengths in a Table B.1.

We show the scattering lengths for naturally occurring mixtures of isotopes in Fig.
3.3. We immediately notice a few things. First, the scattering length is indeed of the
order of rN for most nuclei (rN is given by the dotted line in this figure). We also
see quite a bit of variation amongst the nuclei. In fact, we even see the occurrence
of negative scattering lengths. How negative scattering lengths should be interpreted
is explained in Appendix C, but it is important to realize that this is not a trick.
When analyzing neutron scattering data for samples that contain isotopes with nega-
tive scattering lengths, one had better put the minus signs in the appropriate places.

Another thing that can be seen in this figure is that light and heavy nuclei have
a similar scattering length and, therefore, a similar scattering cross-section. Compare
this to xray scattering where the scattering cross-section increases proportional to the
number of electrons; xrays are not very good at all in scattering off of light atoms,
in particular hydrogen is practically invisible. Having badmouthed xrays in this para-
graph, we should also mention that xrays have a big advantage over neutrons: the flux
of photons greatly exceeds the flux of neutrons.

Scattering lengths can even be complex numbers. A complex number indicates that
there is a chance that the nucleus will absorb the neutron rather than re-emit it. While
it is possible to calculate incoherent scattering lengths and relate this to an incoherent
cross-section, there is not much point in doing so since in practice we use these four
numbers (Table B.1) for any given isotope:
bcoh, σcoh = 4πb2coh, σinc and σabs.

1The factor of 4 is counterintuitive since classically it should be a factor of 1 since πr2N represents
the size of the target when you are trying to hit it with a ball. However, according to quantum
mechanics a neutron is a wave, and therefore, it will envelop the entire target, so that the size of the
target is the surface of the sphere, 4πr2N .
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Fig. 3.3 The coherent scattering length as a function of element number for natural mixtures

of isotopes. The dashed line is given by b = rN = 1.2A1/3, with A the number of nucleides

(neutrons and protons).

The way we use these numbers is the following. We use the coherent scattering
length bcoh when we model the scattered intensity in a powder pattern in the pro-
cess of trying to determine the arrangement of the atoms, or when we scatter off of a
multi-component mixture. We use the coherent scattering cross-section σcoh when we
have systems consisting of identical atoms, or when we want to calculate how thick
we should make our sample for usage in a scattering experiment (see Chapter 11 on
planning a neutron scattering experiment).

We use the incoherent scattering cross-section σinc to calculate the strength of the
incoherent signal; this signal contains information about individual atoms, we do not
have to deal with incoherent scattering lengths binc since we will not add two scattered
waves (each with amplitude binc) originating from neighboring atoms. Finally, we use
the absorbtion cross-section σabs to calculate how many neutrons will not make it
through the sample, or out of the sample after having been scattered. For some iso-
topes, such as lithium-6 or Cd, the absorbtion cross-section is so large that one tends
to avoid using these isotopes in neutron scattering samples: in order to give the neu-
tron a chance to make it out of the sample, the sample should be very small. However,
small samples do not scatter a lot, so a neutron scattering experiment on a strongly
absorbing isotope is going to be a difficult one to perform.

The listed values for absorbtion cross-sections are for neutrons that travel at a speed
of 2200 m/s. The reason for this is that the cross-section is inversely proportional to
the speed of the neutron: the faster the neutron goes, the less likely it is to be absorbed
by the nucleus. A useful, but incorrect, picture for this is that the longer a neutron
takes to traverse a nucleus, the more chance it has of being absorbed. When calculating
the absorbtion cross-section for one’s sample, make sure to use the number evaluated
at the actual speed v of the neutron:
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σabs(v) = σabs(tabulated)
2200

v
;σabs(E) = σabs(tabulated)

√
25.3/E. (3.2)

This equation holds when speed v is measured in m/s, and the energy E of the neutron
in meV.

As an example of all these numbers, we will calculate the efficiency of a 1 inch
diameter cyclinder filled with 10-bar helium-3 for detecting neutrons that have an en-
ergy of 14 meV. A helium-3 detector is operated at room temperature, and even
10 bar of the stuff still behaves as an ideal gas. Therefore, we can calculate the
number density n = N/V of the gas inside the detector using the ideal gas law:
n = N/V = p/(kBT ) For a pressure p= 10 bar= 106 N/m2 we find n= 2.4 x
1026atoms/m3= 2.4 x 1020atoms/cm3. We will need this density to figure out how
many nuclei there are in the path of the neutron when it is fired at a detector, so that
we can calculate the likelihood that the neutron will not be captured by any of them.

An important measure characterizing our problem is the following dimensionless
product: nLσabs(E). Here, L is the length of material the neutron has to travel through,
which would be 1” for the center of the detector tube. This product is almost self ex-
planatory. The longer L, the less likely a neutron will not be captured. The higher
the absorption cross-section, the less likely a neutron will not be captured. The more
atoms there are per volume, the less likely a neutron will not be captured.

If we look at the problem as a transmission problem, then the chance that a neu-
tron will make it through the next portion of the tube without being captured depends
on how likely it was that the neutron made it to the start of this section. In nature,
whenever something depends on how much there is at the outset, we can expect an
exponential function. The same holds here, the transmission probability T is given by:

T = e−nLσabs(E). (3.3)

By extension, the detection efficiency is given by 1-T . When we look up σabs in a table,
we find σabs= 5333 barn= 5333 x 10−24 cm2. A small target area indeed, but nuclei are
small. Bearing in mind that this tabulated cross-section is for neutrons with an energy
of 25.3 meV, we find (eqn 3.2) that the capture cross-section for a single helium-3
nucleus to be 7169 barn for neutrons that have an energy of 14 meV. Therefore, for
a length L of 2.54 cm we find that the transmission is given by T = 0.0126. In other
words, 98.7 % of the neutrons do not make it through the center of the tube, and
therefore, these neutrons are being detected.

We would actually need to make a correction to this, as the tube is round and not
square; some neutrons will try to make it through the much thinner sides. We can
introduce an effective length Leff that captures this effects, and it can be calculated
to be (roughly): Leff = Lπ/4. Using this effective length we find 96.8 % as the overall
detection efficiency for neutrons with an energy of 14 meV. When we do the same cal-
culation for neutrons of energy 80 meV we find 76%. Finally, for a 1/2” detector tube
filled with 10-bar helium-3 gas (as in use on TRIAX) we find the detector efficiency
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for a single tube to be 82 % for 14 meV neutrons.

3.5 Exercises

Exercise 3.1

The physics of neutron scattering is described by the wave function

ψ = ei
~k.~r + f(θ)

eikr

r
.

The first part represents the incoming plane wave, the second part represents the
spherical scattered wave. We want to verify that each part of this expression satisfies
the Schrödinger equation for when the neutron is not in the sample.

a) Show that the plane wave ψ(k) = ei
~k.~r is a solution of the free particle Schrödinger

equation. Use spherical coordinates if you want to complete this exercise before the
end of the semester.

b) Show that the scattered wave ψscat(k) = f(θ) e
ikr

r is a solution of the free parti-
cle Schrödinger equation, provided that f(θ) is independent of θ.

Exercise 3.2

The technique of contrast matching is mostly used for the study of biological sys-
tems by means of neutron scattering. This technique relies on the different scattering
lengths that elements and isotopes have. When we talk about contrast matching in
biology, we refer to partially deuterating our samples.

a) Make a table of the neutron scattering lengths for common biological elements,
and make sure to include hydrogen as well as deuterium.

b) According to the attached figure, the scattering length of (roughly) a 9-91%
mixture of H2O-D2O has a scattering length of zero. Do a calculation to find the exact
percentage.

c) What is the meaning of having an H2O-D2O solution that has zero scattering
length? In other words, what would the neutrons do when they encounter this mixture?

d) The figure shows scattering length density as opposed to scattering length. The
scattering length density is calculated by taking the scattering length, and multiplying
it by the number density of the system. Why is scattering length density the appropri-
ate measure (as opposed to simply the scattering length) when we want to do contrast
matching?
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Fig. 3.4 The scattering length density for biological relevant materials as a function of

deuteration percentage. Source: Wikipedia, Small-angle neutron scattering

e) Between a deuteration percentage of 40-45%, the scattering length (density) of
a partially deuterated protein matches that of the H2O-D2O solution. So both the
solution and the proteins scatter just as much. Why is this advantageous for certain
studies?

Exercise 3.3

Consider a sample in the (slab) geometry shown in the figure. Typically, for neutron
scattering experiments we want a sample that scatters about 5-10% of the incoming
neutrons. If it is less, then we waste a lot of neutrons and might not find any discern-
able signal above the background level; if it is much more then many neutrons will be
scattered multiple times and we no longer can deduce what is going on inside of the
sample. In this problem, we will use 10 % as our target number.

Fig. 3.5 The typical thickness of a sample is such that 90% of the neutrons (traveling from

the left to the right) are transmitted (a.k.a. wasted) without scattering.

When we calculate how thick a sample should be, we use σ = 4πb2 for the cross-
section of an individual atom. We treat our sample as a collection of individual atoms
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in our calculation. For instance, the total cross-section of a sample with N atoms
would be Nσ = N4πb2.

We will calculate how thick our sample should be so that 90% of the neutrons are
transmitted (and, therefore, 10% will be scattered).

a) Why do we only need to know the thickness of the sample? Why do the width
and height not matter?

b) Argue that we are trying to solve the following equation,

0.9 = e−nLσcoh .

with L the thickness of the sample, and n the number density of the atoms in the
sample.

c) What should be the thickness for a sample of lead? The density of lead is 11.342
grams per cubic centimeter, and the mass of one lead atom is 207.2 atomic mass units.
Make sure that you do the unit conversions correctly, so that the argument of the
exponent in eqn 3.4 is a number without units.

d) What should be the thickness of (for the physicists) a sample of activated carbon
with 10% H2 loading, or (for the biologists) a sample of heavy water (D2O). If you
are a mechanical engineer, calculate how thick the wall of your heat pipe should be so
that 90% of the neutrons can fly through it. In order to calculate this, you will have
to match the number density for each element to the cross-section of each element,
or you can calculate the cross-section for one formula unit, and figure out how many
formula units there are per volume.



4

What Is Measured (Ideally and in
Reality)?

We have seen that neutron scattering is an interference technique and that it is used
to map out the relative positions of atoms and to follow their motion, but we have not
discussed exactly what it is that is measured and what the connection is with what
we want to know about our samples.

What we measure is an interference pattern. This interference pattern is the com-
bination of various scattered waves, and the scattered waves originate on individual
atoms when these are exposed to an incoming neutron wave. Interference can occur
when scattered waves from neighboring atoms start to share the same physical space,
or it can occur when the wave that is scattered from an individual atom interacts with
the wave that was scattered by the same atom moments earlier.

In all cases, we measure correlation functions. We measure the correlation between
where one atom is at a certain time and where another atom is a fraction of a second
later. It can even be the correlation where one atom is at a certain time, and where
the same atom is a little bit later. Or, it can be a correlation between where one atom
is at a certain time, and where another atom is at the same time. But in all cases, we
measure the correlation between two (or more) scattering events.

Depending whether we are looking at more than one atom, at the same time or
not, these scattering events and correlation functions go by different names. We show
the names of these functions in Table 4.1. This table is for future reference, not for
studying at this point. The important thing to realize is that beneath the nomencla-
ture and the plethora of symbols, there is always an interference pattern originating
from waves being emitted by scattering centers (the nuclei of atoms in most cases)
when they are being struck by a neutron wave.

If neutron scattering were a black box technique, we would only need to throw
a sample into the sample pit, and out would come the functions listed in Table 4.1
that tell us what we want to know about the material we are studying. Unfortunately,
neutron scattering is not a black box technique, it is brown at best so we should have a
look at what is measured, and how to get from there to the functions listed in this table.

In a neutron scattering experiment, we send a bunch of neutrons at the sample,
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Table 4.1 Overview of the various correlation functions, and their interconnectedness. This

list is incomplete, we refer the reader to standard textbooks for additional functions. L[...]

stands for the Laplace transform, and Ft[...] for the Fourier transform (both from ~r → ~q and

from t→ ω). A and B stand for some microscopic quantity, such as the microscopic density

n.

name notation definition

van Hove correlation GAB(~r − ~r′, t− t′) = < A(~r, t)B(~r′, t′) >eq
function

response function χ”AB(~r − ~r′, t− t′) = < [A(~r, t), B(~r′, t′)] >eq

relaxation function CAB(~r − ~r′, t− t′) = < [A(~r, t)]∗B(~r′, t′) >

with iβ∂tCAB(~r, t)/2 = χ”(~r, t)

intermediate scattering FAB(q, t) = Ft[GAB(~r, t)]
function

susceptibility χAB(q, z) = L[χ”AB(~r, t)]

=
1

π

∫∞
∞ dωχ”AB(q, ω)

1

ω − z

dynamic susceptibility χAB(q, ω) = χAB(q, z = ω + i0+)

imaginary part of χ”AB(q, ω) =
1− e−βh̄ω

2h̄
SAB(q, ω)

dynamic susceptibility = Ft[χ”AB(~r, t)]

dynamic structure factor SAB(q, ω) = Ft[FAB(q, t)]

symmetrized SsymAB (q, ω) = Ft[CAB(~r, t)]

dynamic structure factor =
1− e−βh̄ω

βh̄ω
SAB(q, ω)

current-current correlation CL(q, ω) =
ω2

q2
Snn(q, ω)

function

static structure factor SAB(q) = FAB(q, t = 0)

static susceptibility χAB(q) = χAB(q, z = 0)

=
∫∞
∞

dω

π

χ”AB(q, ω)

ω
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and we measure how many are being scattered, under what angle, and sometimes
even whether they gained or lost some energy in their interaction with the sample.
The amount of energy lost by the neutron, E = h̄ω, is easy to picture, and fairly
easy to measure. Especially when we secretly picture the neutron as a little ball in a
collision. The amount of momentum transferred p to the sample, p = h̄q, is also easy
to picture and to measure. So what is the problem?

We list a few of the problems that stand in the way of translating the number of
detector clicks to the functions listed in Table 4.1. This list is not complete (sorry),
and it is not listed in order of importance as the order is determined by the sample,
the spectrometer, and the problem that is being studied. The list also contains some
jargon that will be explained in subsequent chapters; the jargon should not stand in
the way of appreciating the multiple steps involved in going from counts to desired
functions.

• Background problem: it can be that the sample is so small that it does not scatter
a great many of the neutrons that we send in its direction. Perhaps in this situa-
tion when we position our detector somewhere we would only observe one count
every minute or so corresponding to a neutron that was scattered by the sample.
At the same time, our detector might pick up lots of unwanted neutrons consisting
of neutrons that come from the sample container, or perhaps even neutrons that
came from somewhere else altogether such as the spectrometer next door. These
unwanted counts can drown the signal we are interested in- and, as a result- we
cannot accurately determine the correlation functions from the scattering pattern.

• Multiple scattering: it can be that the sample is so effective at scattering neutrons
that the neutrons that are trying to make it out of the sample after a scattering
event will be scattered once more, or even twice more. If these multiply scat-
tered neutrons make it to a detector, then we do not know how much energy
and momentum was transferred in a single collision, we just know the overall
amount transferred. This muddles the picture to such an extent that we cannot
determine the correlation functions. We would not know how many neutrons had
been scattered once (those are the events we want to count), how many twice, etc.

• Attenuation of the sample: the back of the sample can be exposed to fewer neu-
trons because it is in the shadow of the front of the sample. The shape of the
sample can be such that it is easier for the neutrons to make it out of the sample
in one direction than in another; this would skew our interference pattern and
we would mistakenly believe that the sample has an intrinsic property which in
reality is cause by an extrinsic one (the shape of the sample, not what the atoms
are doing inside it).

• Higher order contamination: when a crystal is used as a monochromator or ana-
lyzer to select neutrons of a specific energy and wave length, then neutrons with
half that wave length, or a third etc. will also be reflected in the same direction.
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This is a direct consequence of the neutron being a wave: if some wavelength
satisfies the Bragg condition [λ = 2d sin(θ/2)], than half this wave length will also
satisfy it. Therefore, neutrons with 4 times, or 9 times the energy of the neutron
we are interested in will also make their way to the sample or detector. This is
called higher order contamination, and the quickest way around it is to use filters
to remove the higher orders. However, this does not entirely remove all of the
problems as explained in the next point.

• Monitor contamination: even when higher order contamination is removed before
it reaches the detector, it can still have been counted by the incident beam moni-
tor which is used to normalize the data. This can result in misjudging the number
of neutrons with a particular energy that are impingent on the sample, with some
energies affected more than others. Ultimately, this would lead to a skewing of
line shapes.

• Instrument resolution: when we are doing experiment, we never just allow a neu-
tron of one particular energy to hit our sample, we always have a range of allowed
energies. This is unavoidable, otherwise we simply would not have enough neu-
trons to do experiments. We also allow neutrons within a certain range of angles
to hit our sample and be detected. Again, this is unavoidable, all our pieces of
equipment are finite sized, and crystals are not perfect but they have an intrinsic
mosaicity. The result is that our scattered signal gets smeared out. If this smear-
ing out exceeds the width of the features we are trying to study, then we have lost
essential information. All together, the degree of smearing is called the instru-
mental resolution function, as it determines which features can still be resolved.
If the resolution function only smeared out our signals a little bit, then we can
still correct for it.

Despite the length of this list, it should not stand in the way of inferring the
sought after correlation functions from an experiment, provided the experiment is well
executed and the data are properly corrected. The high level of government investment
in neutron scattering facilities should serve as proof that such careful experimental
planning can indeed be accomplished.

4.1 The Connection Between Counts and What We Want To
Know

In this section we will have a qualitative look at what is being measured. In an ideal
world we have the following relationship:

Measured counts ∼ property of the sample.

The symbol ∼ means ”directly proportional to”. This is a very powerful statement.
It says that the number of counts- something which has to do with the spectrometer,
the overall setup, and with using neutrons as a probe- gives us direct information of
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what is happening inside the sample, independent of the probe we were using or the
details of the spectrometer. This implies that the results are not merely easy to inter-
pret, it implies that there is no ambiguity as to what is being measured. Clearly, this
is a good thing.

The above relationship (in bold) is valid in an ideal world, one that neutron scat-
terers do not live in. But it remains approximately valid, and by carrying out careful
(but straightforward) corrections, we can restore the validity. For instance, unwanted
background counts would mess up the relationship. However, by measuring the back-
ground, and by subtracting it from the measured counts, we can correct for this. The
relationship also only holds for neutrons that were scattered only once. But we can
model what fraction of neutrons were scattered more than once, and also subtract
this number from the measured counts. The same holds for all other effects that could
affect the above relationship; we can carry out corrections so that the relationship will
hold true (again).

In order to use this relationship to our advantage, we need to be a little bit more
specific about exactly what the left hand and the right hand sides entail. The left hand
side is as easy as just sticking your detector somewhere and tallying up the number of
counts, the right hand side requires some more thought.

The left hand side must be a measure of the likelihood that the sample wanted
to scatter the neutrons. The higher the likelihood, the higher the number of counts.
To make sense of this likelihood, we need to include the conditions under which the
counts were gathered. First, we do not just measure the neutrons that were scattered
in one particular direction only (the center of the detector), we measure all the neu-
trons that hit the detector. The detector spans a solid angle ∆Ω, so all neutrons that
are scattered into this solid angle are counted. This is shown in Fig. 4.1

When we also measure what the final energy Efinal of the neutron is, then we only
accept neutrons at that energy plus some range ∆E around it. So what we would get
out of it is the likelihood that a neutron is being scattered into a solid angle ∆Ω with a
range of energies in the interval Efinal−∆E/2 < E < Efinal +∆E/2. When we use the
symbol σ to denote this likelihood (or cross-section as the terminology in scattering
goes) then we can put some symbols to our relation:

Counts ∼
d2σ

dΩdE
∆Ω∆E ∼

d2σ

dΩdE
∼ property of the sample,

that is:
d2σ

dΩdE
∼ property of the sample.

The fraction on the left hand side is called the double differential cross-section. It is
called double because we differentiate (distinguish) both with respect to solid angle,
as well as to energy range. This is just terminology and math language, it still says
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Fig. 4.1 Figure adapted from Squires’ ”Introduction to the Theory of Thermal Neutron

Scattering” (Dover publications, 1996). The neutrons that are being scattered by the sample

and that are within a solid angle (dΩ for an infinitesimal small solid angle) will be detected

by a finite size detector with surface area ∆S that covers a solid angle ∆Ω.

’counts’. Note that we did not worry about ∆Ω and ∆E. These are numbers, related
for instance to the size of the detector; during the course of the experiment, these
numbers will not suddenly change so we do not have to worry about them too much
at this point.

We also use the differential cross-section. This is the appropriate measure when we
do not care about what the final energy of the scattered neutron is; instead, we simply
measure all of the neutrons that are scattered into a particular solid angle. In such a
setup, without energy analysis, we simple have:

Counts ∼
dσ

dΩ
∆Ω ∼

dσ

dΩ
∼ some other property of the sample.

By the way, if we simply measure all scattered neutrons, no matter what energy
they have or what direction they were scattered in, then we measure the total cross-
section σ. We are almost ready to look at what properties of the sample are being
measured, we should just have a quick think about the constant of proportionality
since, in fact, it is not a constant. Even though it is not a constant, we lumped it with
the ∼ part because it does not tell us anything about our sample.

The constant of proportionality contains a term with the ratio of the speed of
the scattered neutron and that of the incoming neutron: vfinal/vinitial = kfinal/kinitial.
Thus, the expression for the double differential cross-section reads:

Counts ∼
d2σ

dΩdE
∆Ω∆E ∼

d2σ

dΩdE
∼ kfinal

kinitial
(property of the sample) . (4.1)

The origin of this ratio requires some math and quantum mechanics, which can be
found in any neutron scattering textbook. We will not reproduce this here, we merely
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mention from where this term originates. When we discussed what the meaning is of
this cross-section quantity, we called it the ratio of how many neutrons will be scat-
tered compared to how many neutrons hit the sample. In fact, we should have taken
the ratio of how many neutrons per second are scattered by the sample, compared
to how many neutrons per second are hitting it. This explains the term vinitial: it is
a measure of how fast the incoming neutrons fly. The faster they go, the higher the
incoming neutron flux and the more neutrons per second will hit the sample.

The term proportional to vfinal (or kfinal if you prefer) is trickier. Ultimately, we
are interested in how prone the sample is to being kicked into an excited state, we are
interested in the likelihood that such a transition will happen. For instance, we are
interested in how willing the sample is to absorb 1 meV in energy. What we actually
measure in an experiment is the likelihood of this transition, times the number of
possible ways that this transition can be materialized. We are interested in the former,
not in the latter. However, it can be shown (by Léon van Hove) that the number of
possible ways is proportional to the final speed of the neutron. Hence, by explicitly
including this factor in the expression of the cross-section, we are ensured that what
we end up with is a property of the sample, not whether we probed the sample with
high energy or low energy radiation.

4.2 Equal Time Correlation Functions

The connection between detected neutron counts and the intrinsic properties of the
sample was figured out in 1954 by Léon van Hove. His original paper remains a very
good starting point for learning about correlation functions and we certainly encourage
the reader to study his manuscript. In this section, we will follow a somewhat opposite
approach. We will look at some fairly simple systems, and wave our hands into what is
being measured when we do neutron scattering experiments on these simple systems.
We will then make our systems slightly more complicated, and we will arrive at the
main equation for diffraction experiment at the end of this section.

In fact, if you want to try to skip this section, here is the main equation we will
’derive’. If it already makes sense to you, then skip the remainder of this section.

dσ

dΩ
= 〈

N∑
i,j=1

bibje
i~q.(~Ri−~Rj)〉 . (4.2)

We will start with a diatomic molecule, such as O2 or N2. We assume that this
molecule is in a gas of similar molecules, but that the molecules do not influence each
other. That is, the motion and position of one molecule has no effect on the other,
and therefore, we will not see such an effect in neutron scattering experiments. By
extension, we might as well look at a single molecule during a scattering process. We
picture such a molecule in Fig. 4.3.

In this figure we are using neutrons of a fixed wave length, and we have placed
our detector at a scattering angle of 10o. All these numbers are simply to illustrate
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Fig. 4.2 Léon van Hove provided the field on neutron scattering with the theoretical impetus.

Photo source: CERN courier, April 30, 2001.

the connection between the interference pattern, and a property of the system we are
studying. In addition, we have put our diatomic molecule in our neutron beam at some
random angle. The neutron will scatter from both atoms of the molecule, but because
of the separation between them, the two atoms will not be located at similar positions
in the interference pattern. In this figure, we see that one atom is located just below a
white band, while the other is slightly above a band. Since these bands correspond to
identical points in the up and down cycle of the probing wave, we see that the neutron
waves re-emitted by the atoms are not going to be exactly ’in phase’.

’Phase’ is actually a number that tells us what fraction of a cycle (of a wave) has
been completed. For example, if we look at a wave that starts with ’up’, proceeds to
’down’ and goes back ’up’, then a phase of 1/2 will correspond to ’down’, a phase
of 1 will correspond to ’up’, a phase of ’1 1/2’ corresponds to down, a phase of 1/4
corresponds to zero. This is shown in Fig 4.4. If we multiply this number by 2π, the
number of radians in a circle, then we call it the phase angle. In other words, if we
look at a sine or cosine wave, the phase angle would simply be the argument x in sin(x).

Back to Fig. 4.3. When we want to see whether the scattering from both atoms
adds up constructively, or destructively, or somewhere in between, then we have to
figure out what the difference is in phase between the two positions. In the figure, the
difference in phase between the two atoms is a little over 3 (cycles), which can be seen
immediately by counting the white bands. How do we do this counting in terms of
math?

What we have to count is how many white bands, or probing wavelengths λprobe,
fit in the distance between the two atoms. Actually, not the distance per sé, but rather
the projection of the distance onto the direction of propagation of the white bands
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Fig. 4.3 A diatomic molecule as seen during one particular scattering event. The direction

of momentum transfer of the neutron to the sample is given by the big red arrow in the

figure. The incident and scattered neutron directions (scattering angle θ= 10o) are indicated

below the figure by the arrows labeled kin and kout. The momentum transfer h̄q is also shown

(to scale) in this part of the figure. In order to figure out the relative phase between two

atoms that are being probed using a probing wave length indicated by the sinusoidal shape

in the figure, we need to find the projection of the separation between the two atoms onto

the direction of momentum transfer. This projection is shown as the black line on top of the

red arrow.

(indicated by the big red arrow in Fig. 4.3). Hence, an expression for the difference in
phase angle would be:

phase angle difference =
2π

λprobe
(projected distance) = q (projected distance).

In here we have used eqn 3.1 to relate λprobe to q1. Since the direction of momentum
transfer is perpendicular to the white bands, we can rewrite the above equation using

1Note that q in this expression stands for the amount of momentum transferred, it does not stand
for the momentum of the neutron. Eqn 3.1 is in fact very general: anything that has momentum has
an associated wave length, and vice versa, including λprobe.
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Fig. 4.4 The phase of a wave tells us what the amplitude of a wave is at a particular point.

When we multiply the phases shown in the figure by 2π, then we get the phase angles. Note

that a phase of ’1/2’ or ’1 1/2’ would have the same effect on an object subject to the wave

pictured here. Hence it does not matter how many cycles have already passed, the only thing

that matters is the fraction of a full cycle.

the scalar product ~A. ~B = AB cos Θ with Θ the angle between the vectors ~A and ~B.
Thus,

phase angle difference = ~q.(~R2 − ~R1).

~R2 and ~R1 are the position vectors of the two atoms, |~R2-~R1| is the separation between

the two atoms, and |~R2-~R1| times the cosine between the two vectors ~q and (~R2− ~R1)
is the projected distance.

How would this phase angle difference enter an expression for what we can learn
about the system? As can be seen from Fig. 4.3, we would get the same result whether
the phase difference is 2.4 or 3.4 cycles. Atoms would respond in the same way, so we
would not be able to see any difference. Therefore, our mathematical expressions should
reflect this in the sense that the functions we encounter should repeat themselves
when we change the argument of these function by 2π. Such functions are sines and
cosines and combinations thereof. General combinations of sines and cosines are the
exponential function with a complex argument (see Fig. 4.5):

scattered signal ∼
dσ

dΩ
∼ ei (phase angle difference) = ei~q.(

~R2−~R1).

The strength of the scattered signal should (also) depend on how effective each
atom is at scattering a neutron wave. We will use the symbol bi to describe how
effective atom i is at scattering the neutron. We call these b’s the scattering length of
an atom. These numbers were discussed in the previous chapter and are listed in Table
B.1, but as a reminder, they are typically of the order of the radius of the nucleus (that
is, pretty small), so that the square of this number represents a surface area. Think of
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Fig. 4.5 The exponent of a complex number, eiβ , is a convenient way to describe a combi-

nation of sines and cosines, since eiβ=cosβ+isinβ.

it as how big a target a nucleus represents when seen by a neutron. Putting in these
measures of cross section, we are edging closer to our final expression (not there yet):

dσ

dΩ
∼ b1b2ei~q.(

~R2−~R1).

There are actually three terms missing from this expression. Let’s put them in,
and we can see that they make sense:

dσ

dΩ
∼ b1b1ei~q.(

~R1−~R1) + b2b2e
i~q.(~R2−~R2) + b1b2e

i~q.(~R1−~R2) + b2b1e
i~q.(~R2−~R1).

We can see where the three new terms come from. We had been looking at the
difference in phase angle between atom 1 and 2, but the difference between atom 2
and 1 would be subject to the same reasoning. Also, the neutron wave originating
from atom 1 can easily interfere with the neutron wave originating from atom 1, an
instant later. The same holds for atom 2. In short, we should have run over all possible
combinations. We can write the above expression in a more compact form, which we
can then easily generalize to include more atoms for different systems:

dσ

dΩ
∼

2∑
i=1

bie
i~q. ~Ri

2∑
j=1

bje
−i~q. ~Rj =

2∑
i,j=1

bibje
i~q.(~Ri−~Rj). (4.3)

Suppose that instead we had started this section by simply giving this equation
(actually we did just that). We still could have made sense of it. Instead, we would
have read it as follows: the number of counts we measure is given by the sum over
all possible interference patterns created by two atoms, including an atom with itself.
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Therefore, we expect to find the difference in position in the argument, and we expect
to find how effective individual atoms are at scattering the neutrons in there too. We
get complex exponential functions (combinations of sines and cosines) because not
only is it the relative phase that matters, but on top of it we do not care if our wave
is in an upswing for the first time, or for the thirtieth time. We merely care whether
it is in an upswing or in a downswing.

Eqn 4.3 is correct for the situation depicted in Fig. 4.3. However, this figure is very
unlikely to represent an actual scattering experiment. After all, in how many scattering
experiments do we hold a diatomic molecule at a given angle? In a real experiment, we
would just have a gas of those molecules. All these molecules are zooming around, and
their orientation with respect to the direction of momentum transfer can be anything.
In short, we will measure an average over all possible orientations. Therefore, our
expression for an actual scattering experiment should reflect such an average. This is
no problem:

dσ

dΩ
∼ 〈

2∑
i,j=1

bibje
i~q.(~Ri−~Rj)〉, (4.4)

where the brackets 〈...〉 denote such an average. In physics averages go by many names,
in this booklet we shall use the term ensemble average, even when this is not appro-
priate.

When we perform the average over all possible orientations of a diatomic molecule
made up of identical atoms (b1 = b2), we get the following expression (see exercise
4.2):

dσ

dΩ
∼ b2[1 +

sin(qa)

qa
],

with a = |~R2-~R1|, the separation between the two atoms in the molecule. In Fig. 4.6 we
show the measured counts for a collection of nitrogen and oxygen molecules. We can
easily see the oscillation corresponding to sin(qa) reaching successive maxima. Denot-
ing the distance between maxima by k∗, we must have that k∗a = 2π, or a = 2π/k∗.
Reading of k∗ from the figure (k∗= 5.7 Å−1 for N2 and k∗= 5.2 Å−1 for O2), we find
the distance between two atoms in a nitrogen molecule as a= 1.1 Å and a= 1.2 Å in
an oxygen molecule.

Let us now generalize eqn 4.4 to a system containing N identical atoms. We drop
the restriction that the atoms form diatomic molecules, or that they do not interact
with each other. The generalization is rather straightforward:

dσ

dΩ
= Nb2S(~q) , (4.5)

with

S(~q) =
1

N
〈
N∑

i,j=1

ei~q.(
~Ri−~Rj)〉 . (4.6)
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Fig. 4.6 Neutron scattering experiments on diatomic gases or liquids immediately reveal the

fixed bond distance between the two atoms that make up the molecule. This distance a gives

rise to the observed oscillation, with the period of the oscillation given by qa = 2π. Source:

neutron scattering course by Ignatz de Schepper, source of original data unknown.

S(~q) is a correlation function that is called the static structure factor. It is called a
correlation function because it correlates the position of atom i with that of atom j,
and it is called ’static’ because this expression represents a snapshot in the sense that
we did not include any time dependence in the position vectors. For this reason, we
also refer to this class of correlation functions as equal-time or snapshot correlation
functions. The reason why it is called structure factor is because it tells us something
about the atomic structure within our system, such as the distance between the atoms
in a diatomic molecule in our example of Fig. 4.6.

Note that eqn 4.6 makes no reference to the neutron. It is a property of the system,
it does not contain any references to the probe that was used to distill this information.
This was our aim in this chapter: we wanted to show that the number of counts in the
detector was directly proportional to a property of the sample.

The static structure factor is always defined by eqn 4.6, for liquids, gases and solids
alike. There will be differences between these three phases of matter, of course. For
instance, when we scatter by a liquid we do not get any directional information back
simply because there are no preferred directions in a liquid. Therefore, in a liquid
the averaging contained in the brackets 〈...〉 will average over all possible angles. For
single crystals we would not perform this directional averaging since crystals do have
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specific orientations. This can easily be seen in a neutron scattering experiment where
a crystal in the correct orientation will scatter almost all of the neutrons, while it will
hardly scatter any when we rotate the crystal by a few degrees.

We will look into examples of the static structure factor for crystals when we dis-
cuss diffractometers (Chapter 5), and for a collection of many small crystals (called
a powder) when we discuss powder diffractometers (Chapter 6). We now briefly look
into the general shape of the static structure factor for a mono-atomic liquid, such
as argon as this will be illustrative for how measurements as a function of q relate to
what is going on in a system as a function of the distance between atoms.

In Fig. 4.7, we show the measured counts for neutrons scattered by liquid argon at
85 K. In fact, the count rate has been converted according to eqn 4.6 to give us the
static structure factor S(q). As can be seen in this figure, there is quite a bit of detail
to be discerned in this figure, which should tell us something about the structure in
the liquid.

First of all, we observe that the oscillations in S(q) die out with increased q. Re-
calling that q is inversely proportional to the probing wavelength, we see that we lose
our interference pattern when the probing wave length becomes very small. The reason
for this is illustrated in Fig. 4.8.

For very small probing wave lengths, we see that the phase difference resulting from
the separation between two atoms varies rapidly as a function of their separation. Since
the separation between two atoms in a liquid is not fixed, we can expect to find a wide
distribution of phase differences. Sometime we find that a pair of atoms generates a
phase difference corresponding to an integer number of cycles (constructive interfer-
ence), sometimes to half an integer (destructive interference), and most of the times to
some number in between these two extremes. When we carry out the averaging over
all distances and over all angles between the direction of momentum transfer and the
direction of this pair of atoms, then we are averaging over all possible (almost random)
numbers and we cannot distinguish any particular interference pattern. This is why
we observe the oscillations to die out, we simply observe scattering by N individual
atoms, just as if the positions of the atoms are not correlated with each other. When
this scattering is normalized by dividing the total signal by N to yield S(q), then S(q)
will be seen to reach a level of 1 (as indeed is observed in the figure). Note that this is
different from our example of diatomic molecules where we had that one distance did
not vary, namely the distance between two atoms in a molecule.

While a liquid does not exhibit a periodic structure, there is a considerable amount
of short range order. This is caused by the fact that atoms do not sit on top of
each other. Especially in a dense liquid, like argon in our example, we see that we
have a fairly well defined average distance between neighboring atoms. Therefore,
when we probe the liquid with a wavelength corresponding to this average distance
(λprobe ≈ davg), then we can expect to see constructive interference (see Fig. 4.8). This
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Fig. 4.7 Neutron scattering experiments on liquid argon at T= 85 K are a direct measure

of the static structure factor S(q) for this mono-atomic system. We can see that for large

momentum transfers the structure factor approaches 1, the limit where we no longer dis-

tinguish any interference between neighboring atoms. This is also known as the incoherent

limit since we only observe individual atoms at these high q-values. The fairly sharp peak at

qmax ≈ 2Å−1 is (roughly) given by the average interatomic distance davg as qmax = 2π/davg.

The solid line through the points is the result for a molecular dynamics computer simulation

using a Lennard-Jones interaction potential. Source: neutron scattering course by Ignatz de

Schepper, source of original data unknown.

is the origin of the main peak at q ≈ 2 Å−1 in Fig. 4.7. The second and third and so
forth peaks can also be traced back to this average nearest neighbor distance.

When the liquid becomes more and more dense, then the average distance becomes
more and more similar between different pairs of atoms. As a result, the peaks in the
structure factor will become sharper: they increase in height and they narrow in width.
We are seeing that the probing wave length has to match the interatomic separation
more and more accurately in order to get constructive interference. Conversely, when
we decrease the density of the liquid, then we allow for more variation in interatomic
separations, and the peak becomes less pronounced and broader. In the limiting case
of a very low density gas, the peak disappears and the static structure factor starts
resembling a constant: S(q)=1.
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Fig. 4.8 In a liquid that consists of atoms displaying short range order while lacking long

range order at the same time, we can expect the following. If we probe the liquid using a very

short probing wave length (rapidly varying blue squiggle) then the phase difference between

neighboring atoms will almost become random, and the interference pattern disappears. When

we probe the liquid on a wave length corresponding to the average atomic distance davg
(bottom blue squiggle) then we expect to see a certain level of constructive interference

survive, much like the case of the diatomic molecule where we had one well-defined length.

Source: neutron scattering course by Ignatz de Schepper.

We can also easily visualize what would happen to the static structure factor if
the liquid were to freeze into a solid. In this case, all interatomic separations would
be fixed, and the peaks of the static structure factor become very narrow (in q) and
very tall indeed. Such peaks are referred to as Bragg peaks. All constructive interfer-
ence already visible in Fig. 4.7 becomes very pronounced indeed, and all destructive
interference (the dips in between the peaks in Fig. 4.7) also becomes very pronounced.
In fact, it becomes so pronounced that all scattering in between the peaks disappears.
We will deal with such structure factors in our chapters on diffraction and powder
diffraction.

There is more information contained in the static structure factor of liquid argon
shown in Fig. 4.7, such as the intercept S(q = 0), but we refer the reader to specialized
textbooks on liquids for these details. In fact, it is possible to carry out what is called
a Fourier transformation of S(q) to obtain a correlation function that directly deals
with distances. This function is called the pair correlation function g(r), and we give
details of this transformation in Appendix D.
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One final word in this section. When a system consists of more than one type of
atom, then we cannot separate the neutron from the property of the sample quite
as easily as we did in eqns 4.5 and 4.6. We can still do it for single crystals through
analysis, but for liquids it would require additional measurements. Here is the problem
for the general case:

dσ

dΩ
= N

1

N
〈
N∑

i,j=1

bibje
i~q.(~Ri−~Rj)〉. (4.7)

We can no longer take the terms bibj out of the summation, however, for the case
of a single crystal we can still find a configuration (that is, the collection of position

vectors ~Ri and ~Rj) that will reproduce the measured differential cross section (given
our knowledge of the tabulated values for the isotope dependent scattering lengths
b). For liquids the situation is a little more tricky because the intrinsic directional
averaging that accompanies scattering by a liquid no longer allows us to reconstitute
the static structure factor without ambiguity. The solution in this case would be to
repeat the measurement, but now with different isotopes, and hence, with different
scattering lengths. Oh well.

4.3 Time Dependent Correlation Functions

When we measure the energy gain or loss of a neutron during a scattering experiment,
we are in a position to follow the motion of atoms. Again, Léon van Hove figured out
the precise connection between the (double differential) cross-section and what goes
on in our system, the correlation function. Since we are talking about motion as a
function of time on the one hand, and energy transfer on the other hand, a Fourier
or Laplace transform will show up in the connection. So the generalization of eqn 4.7
will look something like this (FT stands for Fourier Transform):

d2σ

dΩdE
=
kf
ki

FT[〈
N∑

i,j=1

bibje
i~q.(~Ri−~Rj(t))〉] . (4.8)

It is a somewhat useful equation to picture what is going on inside the system.
In practice, it is not a useful equation to analyze one’s data. While it looks like a
deceptively simple equation, the time evolution of the position of a particle actually
provides us with a visualization problem because the position of a particle, and the
position of the same particle a little while later do not commute. This is quantum
mechanics speak for ’you need sharp eyes to see it’ to quote Reinhard Scherm (see
popular Scherm text mentioned in the first chapter).

In practice, we analyze our system directly in terms of how much energy is required
to excite it, so that perhaps the neutron causes a phonon to appear. We will show some
examples before too long, let’s first make sense of eqn 4.8 the same way we did in the
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preceding section, by looking at the special case of a mono-atomic system where all
b’s are identical. For this special case we rewite eqn 4.8 as

d2σ

dΩdE
= N

kf
ki
b2S(~q,E) , (4.9)

with

S(~q,E) =
1

N
FT[〈

N∑
i,j=1

ei~q.(
~Ri−~Rj(t))〉] . (4.10)

The above equation shows a nice separation between properties of the neutron
(the b’s and the ratio kf/ki) on the one hand, and the intrinsic property of the sys-
tem (S(~q,E)) on the other hand. As before, this strict separation is only possible for
a mono-atomic system, however, the interpretation of the results is the same for a
multi-atomic system.

S(~q,E) is referred to as the dynamic structure factor of the system, and it is
a measure of how easily spontaneous fluctuations in a system arise and decay. For
completeness, the function that is Fourier transformed in eqn 4.10 to yield the dynamic
structure factor is called the intermediate scattering function. There are a few useful
relationships that pertain to S(~q,E) that can serve as a check on the data analysis
procedure. We list those relationships in Appendix E, here we only mention one,
namely the detailed balance relationship:

S(~q,−E) = e−E/kBTS(~q,E). (4.11)

This relationship is not too hard to derive, but we refer the reader to the neutron
scattering literature for this. In words, the relationship states that the neutron is more
likely to lose energy than to gain energy when being scattered by the sample. In fact,
it holds for any type of probe, not just the neutron. In the extreme case of T= 0 K, the
neutron can only lose energy. This of course makes perfect sense given that a system at
zero Kelvin cannot give up any energy. It is, however, a relationship that has practical
consequences: when studying a system at low temperatures, do not bother with mea-
suring on the energy gain side for the neutron, there is hardly any signal (counts) there.

There are correlation functions that are related to the dynamic structure factor,
such as the dynamic susceptibility and the relaxation function. We will come back to
these functions in Chapter 12 when we look into our data analysis, and what can be
misinterpreted when scrutinizing one’s data. For now, let’s look at some examples for
liquids and solids to gain a better understanding of what S(~q,E) entails.

4.3.1 Liquids

Liquids are always a good starting point since it is (almost) possible to visualize the
motion of atoms, and compare the expectations for these motions with what we ob-
serve in the dynamic structure factor. Since this section is meant to illustrate the
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Fig. 4.9 A sketch representing microscopic fluctuations of the number density n. Essentially,

what is depicted is a small scale sound wave with regions of increased density (compared to

the average density of about 3.5 atoms between the vertical lines) followed by regions of

decreased density. The wave length of this fluctuation is indicated by the sinusoidal line

shape.

meaning of S(~q,E), we will assume a mono-atomic liquid so that eqns 4.9 and 4.10
are valid. Also, since it is a liquid, we do not need to keep the vector symbol in S(~q,E).

Liquids are capable of sustaining sound waves as anyone knows who has ever
screamed under water. These sound waves also persist on a much shorter length scale,
as shown in Fig. 4.9. A neutron can excite such a sound wave or absorb it, should it al-
ready be present. In order to do so, the probing wavelength λprobe associated with the
interference pattern has to match the wavelength of the fluctuation. This determines
how much momentum the neutron should transfer to the sample. Also, a sound wave
costs a certain amount of energy to create; the neutron has to give up this amount of
energy.

When we put these consideration together, we expect to observe a peak in S(q, E)
at an energy transfer E, where E corresponds to the energy of the sound wave that
has a wave length of λ = 2π/q. We show such a peak in Fig. 4.10. This figure only
shows S(q, E = h̄ω) for the neutron losing some of its energy, but one can clearly see
a peak being present at non-zero energy transfers. The four panels in Fig. 4.10 show
the results for increasingly shorter wave lengths. We observe, by noticing that the
peak moves out to higher energy transfers for increased q, that is costs more and more
energy to create a sound wave of shorter and shorter wave length. This observation is
in line with everyday experience that low tones (long wave lengths) carry less energy
than high tones (shorter wave lengths).

We can also see in this figure that there is a feature around E= 0, the elastic
channel. This corresponds to diffusive motion. When we (locally) increase the den-
sity in a liquid, it does not necessarily lead to a propagating pressure wave (a.k.a. a
sound wave). The excess density can also simply diffuse away. Such a process some-
times makes a neutron gain a little bit of energy, sometimes it loses a bit of energy
depending on what direction the diffusing particles were heading. On average, there is
no net energy gain. Therefore, diffusive features show up as broad (in energy transfer)
lines around the elastic channel (E= 0). This type of scattering is also referred to as
quasi-elastic scattering, and it is important in liquids, polymers and biological systems.
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q q

Fig. 4.10 Neutron scattering data (dots) for S(q, ω) for Ar at T= 301 K and at a particle

density n= 0.0504 Å−3. The figure has been adapted with permission from U. Bafile et al.,

Phys. Rev. Lett. 65, 2394 (1990). The q-values are 0.050 Å−1, 0.075 Å−1, 0.10 Å−1 and 0.125

Å−1 for panels (a), (b), (c) and (d), respectively.

Let’s also look at the other extreme, where the probing wave length is very short
indeed, much shorter than the distance between the atoms. So we are again looking
at the situation shown in Fig. 4.8. Even though we are now investigating how much
energy is gained or lost when the liquid is probed at a certain wave length λprobe,
the same overall arguments- related to length scale- apply as before. At very short
probing wave lengths, we will only get constructive interference between one atom
and itself. Moreover, we will only be able to follow the short-time motion of this
atom. This is easy to see, especially if we treat the problem classically by stating that
~Ri(t) = ~Ri(t = 0) + ~vi(t)t and evaluating the large q limit:

S(q, E) = 1
NFT[〈

∑N
i,j=1 e

i~q.(~Ri−~Rj(t))〉]

≈ 1
NFT[〈

∑N
i=1 e

i~q.(~Ri−~Ri(t))〉] = 1
NFT[〈

∑N
i=1 e

−i~q.~vit〉]. (4.12)

If we wait too long (large t) then the argument ~q.~vt will be very large so we would be
looking at a wildly oscillating function. Such functions do not give rise to constructive
interference when the averaging 〈...〉 is performed. Therefore, the only contribution we
can expect is for small values of ~q.~vt, which occur for short times. So what exactly
are we measuring in this limit of (very) short probing wavelengths? The behavior of
individual particles followed over very short times. Essentially, times so short that the
atoms do not even have time to make it over to a neighbor and collide. This is very
much like an ideal gas, where the particles do not interact with each other. This limit
is therefore called the ideal-gas limit, and it has indeed been observed in many neutron
scattering experiments on liquids.
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Thus, whenever we measure at very high momentum transfers h̄q in liquids, then
we follow the behavior of individual atoms over short times. In experiments, this
shows up as a broad line shape centered around the recoil energy. While according
to classical arguments ideal gas behavior shows up around E= 0, when we include
quantum mechanical arguments, the scattering will be centered around the recoil en-
ergy Erecoil = (h̄q)2/(2m) with m the mass of the atom in the liquid that causes the
scattering.

4.3.2 Solids

What can we expect for solids? Clearly, we can expect to find sound waves. Therefore,
as was the case in liquids, we expect to see peaks in S(~q,E) corresponding to the
energy required to excite a sound wave of wavelength λ = 2π/q. In fact, these sound
waves should be much more orderly than the sound waves in a liquid, since all the
atoms sit on well defined positions. We can expect a sound wave in solids to be able to
persist for longer, and by extension, travel further. This brings up the following ques-
tion: how would we observe- in neutron scattering experiments- how long something
lasts for until it decays back to equilibrium?

The answer to this is that the sound waves will produce much sharper (in energy)
peaks than is the case in liquids (such as the peaks shown in liquid argon in Fig. 4.10).
The mathematical relationship between how long excitations persist for, and what we
see in neutron scattering is that the width Γ (in energy) of a peak is given by the
decay time τ of an excitation as follows: Γ = 1/τ .

We can give a hand waving argument why the peaks sharpen up the longer the
excitation lasts for. Looking back at the interference patterns shown in Chapter 2, we
see that an interference pattern shows up as bands. But we have to bear in mind that
these bands are not stationary. If there is a sound wave present in the crystal, or if we
want to create one, then we have to make sure that the probing wave length matches
the wave length of the bands. But we also have to ensure that our probing wave travels
just as fast as the sound wave. Only when this is the case can we ensure that we still
get constructive interference: when the points of high density of the sound wave have
moved by half a wave length, our probing wave should have moved the same distance
so as to maintain the condition of constructive interference. If we had not matched
this movement, then we no longer would have had a perfect match.

Suppose a sound wave persists for quite a long time. During this time, we must
make sure that the speed of our probing wave length maintains its match with the
speed of the sound wave. The speed of our probing wavelength is determined (in part)
by the amount of energy transferred. For a perfect match, we must be very precise in
the amount of energy we transfer. A slight mismatch can result in going from a con-
structive interference condition to a destructive one after a few cycles. For instance,
a mismatch of 10 % becomes a mismatch of 50 % after 5 cycles, which would give us
perfect destructive interference.
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Fig. 4.11 Figure reproduced with permission from Z.-Y. Zeng et al., Physica B 405, 3665

(2010). Shown is the dispersion relation for nickel measured along various crystallographic

directions. The label ’L’ stands for longitudinal, the label ’T’ for transverse. The points are

obtained by reading off the peak positions in inelastic scattering experiments (performed by

Birgenau in 1964), the solid lines are theoretical calculations.

In contrast to this, if an excitation does not persist for very long, then we can get
away with a less than perfect match. Suppose an excitation had decayed back to equi-
librium by the time it has propagated over a distance comparable to its wave length.
If we had probed this wave with a 10 % mismatch in propagation speed, then we still
would have gotten constructive interference since in this case nothing exists anymore
after 5 cycles to give us destructive interference. So we would not get perfect construc-
tive interference, but we would get some. As a result, we would see some scattered
signal not just at the exact match, but also for energy transfers close to it. In this way,
the width (in energy) for which we still see a signal, is a measure of how long it took
for the excitation to decay. A long-lived excitation required a close match over many
cycles, so this would result in a sharp peak in our neutron scattering spectra. A fast
decaying excitation would result in a broad peak. Thus, Γ = 1/τ .

When there are multiple types of atoms in a solid, then we can actually have many
more types of vibrations. Not all the atoms necessarily have to be moving in the same
direction; we can also have that some atoms move to the left, and some move to the
right. This latter type of out-of-phase vibration costs much more energy than a vibra-
tion where all atoms move in the same direction during the back and forth motion.
When all atoms move in the same direction, we call them acoustic phonons (because
you can hear them when the wave length is very long). When they move in opposite
directions, we call them optical phonons. The latter term comes from the fact that
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Fig. 4.12 Figure reproduced with permission from R. J. McQueeney et al., Phys. Rev. B73,

174409 (2006). A magnetic spin wave in magnetite. The panel on the left shows the excitation

just above the charge-order transition (the Verwey transition); the panel on the right shows

the results just below the transition. This demonstrates that neutrons are sensitive to small

changes in the magnetic excitation spectrum. Note the actual value of the energy transferred

by the neutron, these magnetic excitations require quite a bit of energy to create.

they are visible in light scattering experiments.

Neutrons can easily excite both types of phonons. We can measure how much en-
ergy is required to excite these phonons as a function of their wave lengths, and as
a function of direction of momentum transfer in the crystal. Some phonons propa-
gate (vibrate) faster along one direction then along another direction. The excitation
energies as a function of wave length and direction of propagation are referred to as
the dispersion relations, an example of which is shown in Fig. 4.11 where the acous-
tic phonons are displayed as a function of momentum transfer along the three main
crystallographic directions. Note that there are three acoustic phonon branches, one
called a longitudinal branch, and the other two called transverse branches. We will
revisit this topic when we deal with inelastic neutron spectrometers.

4.4 Incoherent and Magnetic Scattering

Phonons are an example of collective behavior, and it will be observed in neutron scat-
tering experiments through the coherent cross-section. As mentioned, neutrons can
also be scattered incoherently by the sample, and they are also sensitive to magnetic
excitations through the magnetic cross-section. As such, eqn 4.9 is a little oversimpli-
fied, and it makes sense to write out the coherent, incoherent and magnetic contribu-
tions separately. We do this for a mono-atomic system, and use the relationship that
σcoh = 4πb2coh:

d2σ

dΩdE
= N

kf
ki

[
σcoh

4π
Scoh(q, E) +

σinc

4π
Sinc(q, E) +

σmag

4π
Smag(q, E)] . (4.13)

In other words, we can treat all three contributions separately, and we simply refer
to them as the coherent dynamic structure factor, the incoherent dynamic structure
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factor and the magnetic dynamic structure factor. The magnetic dynamic structure
factor will contain information about the magnetic excitations in the system, such as
the magnons (also called the spin waves, the magnetic equivalent of the phonons). We
show an example of magnetic excitations in Fig. 4.12 for magnetite, the oldest known
magnetic material.

Actually, we should have carried out the same separation (as shown in eqn 4.13) for
the equal time correlation functions. We did not do it for the incoherent static structure
factor, since that function would not make any sense. It would be independent of mo-
mentum transfer as it does not contain any information on structural effects, since it is
related to scattering by a single entity. Anything incoherent has to do with individual
atoms, with local excitations. But we definitely should differentiate between the mag-
netic and non-magnetic parts of the structure factor. The latter is called the nuclear
structure factor; the former the magnetic structure factor. One routinely carries out
these separations during the analysis stages of powder diffraction patterns (Chapter 6).

4.5 Exercises

Exercise 4.1

When we do neutron scattering on biological samples, we (frequently) use thin
slabs rather than cylindrical shapes. Why is this?

Exercise 4.2

The scattering cross-section for diatomic molecules where the atoms are separated
by a distance a is given by

dσ

dΩ
∼ b2[1 +

sin(qa)

qa
].

Derive this equation by carrying out the appropriate directional averaging that is con-
tained within eqn 4.4.

Exercise 4.3

In eqn 4.12, repeated below, we showed (in the classical approximation) that for
large momentum transfers the dynamic structure factor S(q, E) for liquids looks like
that of an ideal gas. At these high momentum transfers, we only observe the behavior
of individual atoms over short times.

S(q, E) = 1
NFT[〈

∑N
i,j=1 e

i~q.(~Ri−~Rj(t))〉]

≈ 1
NFT[〈

∑N
i=1 e

i~q.(~Ri−~Ri(t))〉] ≈ 1
NFT[〈

∑N
i=1 e

−i~q.~vit〉]

= FT[〈e−i~q.~v1t〉]
.
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Fig. 4.13 Rhodopsin embedded in a lipid bilayer. Source: Wikipedia, Rhodopsin.

In here, we will not worry about any pre-factors, but we will calculate S(q, E) by
evaluating this equation.

a) Use a Maxwellian distribution of molecular velocities to evaluate the right hand
side of this equation before doing a Fourier transform:

[〈e−i~q.~v1t〉] =

∫
e−(1/2)mv2/kBT e−i~q.~vtd~v/

∫
e−(1/2)mv2/kBT d~v.

b) Carry out the fourier transform to arrive at an expression for S(q, E):

S(q, E) =

∫ ∞
−∞

eiEt/h̄[answer from a)] dt.

Note that this is the classical expression for an ideal gas. When we include quantum
mechanics, we find that the peak positions are shifted to (h̄q)2/2m, but their widths
remain the same. This latter result is derived in many standard texts on neutron scat-
tering such as Lovesey’s.

Exercise 4.4

Looking at figure 4.10, and using the conversion table in Appendix A when needed,
estimate the speed of sound for the argon gas when it was probed by the neutrons in
this scattering experiment.

Exercise 4.5

A membrane shares some characteristics with a diatomic molecule, namely, we have
a well defined separation between the two sides of the membrane. Therefore, when we
do neutron scattering at high momentum transfers, we might expect a similar oscil-
lation in the scattering cross-section as shown in Fig. 4.13. Estimate, or look up, the
bilayer separation and make a sketch of the expected scattering profile for large mo-
mentum transfers for the membrane shown in the figure below (Fig. 4.13). What is
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the expected period of oscillation in Å−1?

Exercise 4.6

If you are interested in how tightly bound a particular atom is to its surroundings,
such as a hydrogen atom inside of a carbon nanotube, you can learn this information
by looking at the motion of this atom. For instance, you could imagine measuring the
characteristic energy (frequency) of the harmonic oscillator potential that is trapping
this atom.
Where in q−space should you be looking if you want to measure this bonding by doing
a neutron scattering experiment? Why?



Part II

The instruments

This part of the booklet deals with the specifics of the most commonly used spec-
trometers at reactor sources. Every chapter discusses a particular spectrometer, not
merely at the instrumental level, but it also discusses what types of experiments can
be performed using these spectrometers, and what type of science can be done on
them.





5

Diffractometers

Diffractometers are used to investigate the structure of materials, and changes therein
when these materials are subject to a change in temperature or pressure. Powder
diffractometers are a specialized version of diffractometers and they will be discussed
separately in Chapter 6. In here, we look at the most basic version of the diffractome-
ter: the 2-axis diffractometer at a reactor source, and the one-axis diffractometer at a
pulsed neutron source.

The basic 2-axis diffractometer was developed at Oak Ridge National Laboratory
by Clifford Shull and Ernie Wollan. The operation of this type of spectrometer is
identical to an xray diffractometer that one might find in the chemistry department.
Neutrons of one particular energy (wavelength) are scattered out of the main neutron
beam by using the Bragg reflection of a monochromator crystal. Examples of such crys-
tals are silicon, copper, and pyrolytic graphite (PG). This scattered beam of neutrons
is directed at the sample we wish to investigate. The neutrons scattered by the sample
are counted by moving a detector around the sample. This process is shown in Fig. 5.2.

A diffractometer at a pulsed neutron source does not require a monochromating
crystal since the energy (wavelength) of the neutrons can be determined from the
time it takes the neutrons to travel the distance between the source and the detector.
As such, the only thing we would need for such a diffractometer is a single detector
placed at some angle. We would not even have to move the detector around the sam-

Fig. 5.1 The inventors of the diffractometer, Ernie Wollan (left) and Cliff Shull.
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Fig. 5.2 A diffractometer at a reactor source requires a device for selecting a certain wave

length out of all the neutrons that come down a beam tube. The monochromator crystal that

selects these neutrons Bragg reflects these neutrons onto the sample. A detector can then be

moved around the sample to measure the number of scattered neutrons as a function of the

amount of momentum that has been transferred to the sample.

ple. Because every neutron incident on the sample that is scattered into the detector
would have a different incoming wavelength, every scattered neutron would transfer a
different amount of momentum to the sample. In this way, we can still measure how
likely it is for the sample to scatter a neutron as a function of how much momentum
is transferred between the neutron and the sample.

In practice, one is very unlikely to encounter a single detector diffractometer (even
though one might well (ab)use a more sophisticated spectrometer as a single detector
2-axis diffractometer). An obvious improvement on the single detector 2-axis diffrac-
tometer is to use multiple detectors- located at different angles- or to use a position
sensitive detector. For the case of a diffractometer at a reactor source, one would then
measure multiple momentum transfers using a single incident neutron wave length.
For the case of a multi-detector diffractometer at a pulsed source, one could greatly
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Fig. 5.3 A straightforward diffractometer. In fact, it is one step above straightforward as

this diffractometer (2XC at MURR) uses five detectors simultaneously. The openings in front

of the five detectors can easily be identified in this photo, and the detectors themselves are

tucked away inside of shielding material. Also visible is the sample mounted on the sample

table.

reduce the counting time by measuring all the momentum transfers in multiple detec-
tors simultaneously. An example of a multi-detector at a reactor source is shown in
Fig. 5.3, an example of such an improved diffractometer at a pulsed neutron source is
shown in Fig. 5.4.

For the remainder of this chapter, we will focus on the most primitive of diffrac-
tometers; namely, the 2-axis diffractometer at a reactor source. As mentioned, the
powder diffractometer will be discussed in Chapter 6, whereas the single crystal four-
circle diffractometer will not be mentioned at all. This latter instrument is no longer
in very high use at reactor neutron sources now that single-crystal diffractometers at
pulsed neutron sources have been developed. Another diffractometer which will not
be discussed in great detail is the stress diffractometer used in engineering studies,
although we will briefly describe this instrument in the last section of this chapter.

We will first discuss the basics of the 2-axis spectrometer, including its limitations.
After that, we will have a detailed look at the components of the instrument.

5.1 The Skinny

The scattering profile that we measure on a 2-axis spectrometer can be interpreted
without ambiguity when the neutrons are being scattered elastically, or almost elasti-
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Fig. 5.4 Shown is a schematic of the General Materials Diffractometer GEM at the ISIS

spallation source in the United Kingdom (wwwisis2.isis.rl.ac.uk). In principle, each of the

many detectors is capable of measuring the full diffraction pattern, so the gain in neutron

count rate is evident.

cally. In contrast, experiments on materials where the neutrons can gain or lose a large
fraction of their energy during a scattering event require quite a bit of data massaging.
There are two reasons for this, as we will detail next.

When we do a 2-axis scattering experiment, we wish to measure the static structure
factor S(~q) of a material, with h̄~q the amount of momentum transferred from the
neutron to the sample. We are not interested in any energy transferred from the
neutron to the sample; thus, we are after (see Appendix E)

S(~q) =

∫ ∞
−∞

S(~q,E)dE, (5.1)

with E the amount of energy transferred from the neutron to the sample, the difference
between the incoming energy Ei and the final energy Ef . In an ideal world, we (would
like to) use the neutron detector to do this energy integration for us. Especially when
we use a neutron detector that is highly efficient in detecting all neutrons- independent
of their energy- then we stand a good chance of accomplishing our goal.

In practice, we will only do a good job when the amount of energy transferred to
the sample (if any), is small compared to the energy of the neutron. First, if we transfer
a large amount of energy, then this implies that there will be a large difference between
the incoming neutron wave number ki and the scattered neutron wave number kf . This
messes up our nominal value of q as this is determined- for the case of diffraction- by
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assuming that all scattering events are elastic (ki = kf ):

|~q| = [k2
i + k2

f − 2kikf cos(θ)]1/2 = 2ki sin(θ/2).

Therefore, we would make increasingly more substantial errors in q when the difference
between ki and kf increases.

An even more serious problem is that the exact integration of eqn 5.1 is not actually
carried out by the detector. What we measure instead is related to our differential
cross-section in the following approximation (stated here for the case of a mono-atomic
sample so as to keep our notation from being too cumbersome):(

dσ

dΩ

)
eff

=

∫ ∞
0

ε(Ef )
d2σ

dΩdEf
dEf = N

σcoh

4π

∫ Ei

−∞
ε(Ef )

kf

ki
S(~q,Ei − Ef )d(Ei − Ef )

In here, we have used the symbol ε(Ef ) to indicate the energy dependent detection effi-
ciency of our detector. Even in the case where ε(Ef )=1 for all neutron energies, we still
would not measure the integral contained in eqn 5.1. This is because in our setup we
are integrating over the function (kf/ki)S(~q,Ei−Ef ) rather than over S(~q,Ei−Ef ).
In addition, the upper limit of our energy integration is limited to the neutron giving
up all of its energy.

This makes it clear why we do a good job at measuring S(~q) when we use very
large incident energies compared to what the neutron transfers. In those instances, the
upper limit of our integral would be large enough, and the ratio kf/ki is very close to
1 for all scattering events. When this is satisfied (and ε(Ef )=1) we find

(
dσ

dΩ

)
eff

= N
σcoh

4π

∫ Ei

−∞
kf

ki
S(~q,Ei − Ef )d(Ei − Ef )

≈ N
σcoh

4π

∫∞
−∞ S(~q,E′)dE′ = N

σcoh

4π
S(~q).

This discussion also implies that the problem does not really exist for samples that
scatter almost elastically, but that we can expect problems in liquids and other ’soft’
materials. For those ’soft’ materials there exists a correction scheme known as Placzek
corrections. We refer the reader to the literature for more information on these cor-
rections.

Given these limitations, let’s have a look at some of the science that can be done
on a 2-axis diffractometer. In fact, let’s look at some physics that is done best on a
2-axis diffractometer rather than on a 1-axis diffractometer at a pulsed source.

For scattering events that are almost elastic, we can measure at an exact q-value
of our choosing. We simply move our detector to the appropriate scattering angle.
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For the cases where we are only interested in this particular q-value, the advantage
of measuring multiple q-values at the same time is no longer relevant. In those cases,
multi-detector instruments do not offer an advantage over a single detector one. While
multi-detector instruments at a pulsed source would still allow us to measure this
particular q-value in all detectors, we would actually not have as much intensity as
on a straightforward 2-axis spectrometer. This is because we would not be using all
the other wave lengths that are produced in the spallation process. When this is the
case, we actually start to notice that a pulsed source is off most of the time, whereas
a reactor source is on all of the time.

Under what circumstances would we be interested in a single q-value, or in a nar-
row range of q-values? This is the case when we are interested in the evolution of a
particular feature upon changing an external parameter such as pressure, temperature,
hydration level, stress-causing load, etc. For instance, close to a phase transition where
the system changes from a paramagnet to a ferromagnet, we can see the correlations
between neighboring atoms build up. Or, we can follow the changes in conformation of
polymer molecules on a surface when we add an additional layer of molecules, or raise
the temperature. We can follow the folding of a protein as a function of temperature
or hydration level by looking for the appearance of a specific inter amino-acid distance
that tells us that the folding process has been completed. Diffractometers have even
been used to watch cement dry.

In short, whenever we are interested in specific structural changes, we can use a
2-axis diffractometer. Not only will we measure at what temperature or pressure these
changes have been completed, but we can also follow the approach to ordering as well
as changes in ordered structure. We illustrate this using an example in hard condensed
matter physics where the approach to ordering in an unusual quantum magnet was
studied using 2-axis diffraction. The details of the physics in this example are not im-
portant, rather this example should be viewed as a nice demonstration of the richness
of information that is available to the experimenter when doing neutron scattering ex-
periments. Readers who are not quite ready, or not interested, in the physics of some
particular system, can skip to the start of the next section.

The system studied was a so-called quantum critical point system. These are met-
als that harbor magnetic ions. When this metal is cooled down, the magnetic ions
try to align themselves with their neighbors. What makes these systems interesting
though is that the conduction electrons are getting progressively better at shielding
these magnetic moments by aligning their own magnetic moments (originating from
the intrinsic spin of the electron) opposite to the magnetic moment of the ions. Thus,
we have two effects competing with each other: when the moments are shielded, they
cannot align with their neighbors. Conversely, when the moments are aligned, then
the conduction electrons can no longer shield them. If this competition stays in place
all the way down to zero Kelvin, then we can expect new physics to emerge, since
the approach to ordering will be determined by quantum fluctuations rather than by
thermal fluctuations.
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2-axis diffractometry sheds light on how this competition between ordering and
shielding gives rise to a new ground state, at least in some of these quantum critical
systems. We show the results of the approach to ordering for one particular tempera-
ture in Fig. 5.5. There are a few noteworthy aspects to these results.

First, scattering can be observed at positions (arrows) that do not correspond to
the Bragg reflections based on the chemical unit cell. This implies that the distance
over which the magnetic structure repeats itself, the magnetic unit cell, is larger than
the distance over which the chemical structure repeats itself. The data in this figure
were obtained using 2” of graphite as a filter to prevent all higher order contamina-
tion from reaching the detector. Such precautions were necessary in this case since
partially shielded magnetic moments scatter far fewer neutrons than second or third
order nuclear reflections do. This filter will be discussed in more detail in the next
section.

Second, the peaks that are visible in this figure are not resolution limited; instead,
they are spread out in q-space (reciprocal space). As we intimated in earlier chapters,
this implies that the (magnetic) ordering is not long-range. That is, ordering does not
span the breadth of the crystal. From the width Γ of the peaks in q-space, we can
determine the length L in real space over which the moments are correlated: L = 1/Γ,
with L measured in lattice units and Γ in reciprocal lattice units. The reciprocal lattice
is discussed in Chapter 6, here we just need that one reciprocal lattice unit correspond-
ing to transfer of momentum along the crystallographic ~c-direction is 2π/c, where c is
the length of the c-axis of the nuclear unit cell. Therefore, the figure (Fig. 5.5) tells
us that the magnetic moments are lined up with their nearest neighbors, but that the
ordering is no longer recognizable by the time we are looking at two magnetic moments
separated over a large distance. Therefore, we are looking at the approach to ordering,
not at the resulting ordered structure itself.

Third, we can see that the intensity of the peaks diminishes with increasing amounts
of momentum transfer. This is an interference effect. In magnetic scattering, the neu-
tron is scattered by the electronic cloud of unpaired electrons around a nucleus, but
not by the nucleus itself. When we probe the system at higher and higher momentum
transfers, we are using shorter and shorter probing wavelengths. When we reach prob-
ing wavelengths comparable to the size of the electronic cloud, then we will start to see
that the scattered wave originating from one part of the cloud has traveled a different
distance than the scattered wave originating from the opposite size of the cloud, as
shown in Fig. 5.6. When this happens, we no longer get perfect constructive interfer-
ence, and our scattered signal will be weaker. This is a good thing, because we can
calculate the size (and shape) of the electronic cloud from the demise of our scattering
intensity. In our example, we could conclude that the electronic clouds corresponded
to f-orbitals.

Fourth, the data shown are actually the raw data minus the data taken at el-
evated temperature. This procedure removes any unwanted nuclear scattering, such
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Fig. 5.5 Shown is the magnetic scattered intensity obtained from subtracting data taken at

elevated temperature (56 K)- where there are no magnetic correlations present- from data

taken at 2 K. η is a measure of how much momentum is transferred to the sample along

the c-axis direction of the crystal. (rlu) stands for reciprocal lattice units, and only the

amount of momentum transferred along the c-direction was varied in obtaining these data.

The black dots and red dots are for momentum transfers along different directions, revealing

the direction in which the magnetic moments are pointing. The solid blue line is the expected

demise in scattered intensity for scattering originating from f-orbitals, the dashed-dotted line

is for d-orbitals. Clearly, the scattering cannot be attributed to some transition metal ions

that were also present in the sample. Note that there are some gaps in the data corresponding

to strong nuclear reflections such as the (112) and the (114) reflections. Even subtracting data

taken at an elevated temperature will not entirely get rid off nuclear peaks. The change in

temperature will have affected the lattice parameters sufficiently so that these very intense

peaks will have shifted slightly in q-space rendering a straightforward subtraction impossible.

Figure reproduced from W. Montfrooij et al., Phys. Rev. B76, 052404 (2007).

as an incoherent signal that could possibly obfuscate the results. Such a background
subtraction is not limited to magnetic scattering, one could also imagine a biologi-
cal system with various levels of deuteration. For instance, subtracting two different
deuteration levels (by and large) leaves the signal due to the hydrogen (or deuterium)
in the sample.

Fifth, the red points in this figure were measured under identical conditions, but
along a different crystallographic direction. Unlike the black data points, no signal
is observed. This absence of signal tells us in what direction the magnetic moments
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Fig. 5.6 When the scattering originates from the electronic cloud rather than from the

much smaller nucleus, then we will see a demise in scattered intensity because not all parts

of the electronic cloud (orbital) are probed with the same phase. Studying this demise very

carefully as a function of probing wave length and direction of momentum transfer, we should

be able to not only distinguish the overall shape and size of the orbital, we should also be

able to determine whether the occupied orbitals have any preferred orientations. This latter

possibility is known as orbital ordering.

are pointing. This is because unlike the case of nuclear scattering, the magnetic cross-
section depends on the relative angle between the direction of momentum transfer and
the orientation of the magnetic moment the neutron is being scattered by.

While Fig. 5.5 told us a few things about the magnetic moments in this system, it
did not tell us anything ground breaking about this type of materials, the quantum
critical magnets. The new knowledge came when it was measured how many magnetic
ions had lined up with their neighbors along various crystallographic directions. On
very general grounds it was expected that this number would be different along every
direction as the distances between the moments was not the same along all directions,
and therefore, the magnetic moments should align more strongly with each other along
directions where the moments were more closely spaced. This is not at all what was
observed, however, as shown in Fig. 5.7.

This figure (Fig. 5.7) shows the evolution (with cooling down) of the scattered
signal, reflecting that more and more moments are lining up with their neighbors,
thereby giving rise to constructive interference. Note that magnetic moments point-
ing in random directions would not give rise to scattered waves that would add up
constructively, because the phases of the scattered waves would be random. We would
only observe scattered waves originating from individual moments under those circum-
stances, similar to why we would get incoherent nuclear scattering when we have a
collection of different isotopes, or a collection of identical isotopes with a nuclear spin.
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Fig. 5.7 The temperature dependence of the magnetic scattering of the first peak shown in

Fig. 5.5. One observes that the scattering starts to emerge at 16 K, and increases in intensity

while narrowing in width in q-space when we cool down more. Since the inverse of this width

is directly proportional to the distance over which moments are correlated, we see that (for all

temperatures) there are just as many moments lined up along the c-direction (red symbols,

momentum transfer along the (00η)-direction) as there are along another high symmetry

direction (black symbols, momentum transfer along the (ηη0)-direction. Figure reproduced

from W. Montfrooij et al., Phys. Rev. B76, 052404 (2007).

In our example, since we actually see peaks in the scattered intensity, we know that
moments must be lining up with each other in some way.

We see the peaks first emerging at 16 K, implying that above this temperature the
thermal energy is still high enough for the moments to lose their orientation with re-
spect to their neighbors. But once we cool down more, we see that the thermal energy
available for destroying order becomes less than the energy gain associated with lining
up two atomic magnets, and we observe more and more moments lining up with their
neighbors. This is reflected both in the intensity of the peaks (reflecting the number
of moments partaking in the constructive interference process) and the characteristic
width Γ of the peaks: the smaller the width, the larger the distance L in real space
over which the moments are correlated.

The most remarkable feature that can be seen in Fig. 5.7 is that the width of the
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peaks is identical along different crystallographic directions. This can be observed at
any of the temperatures that the data were taken. This implies that independent of
what direction one looks, one will always find that (on average) the same number
of moments have lined up. As mentioned, this is unexpected given the difference in
interatomic distances between the magnetic ions in this (tetragonal) structure. After
some thinking, which is the most fun part when confronted with very accurate and very
puzzling neutron scattering data, it was concluded that increasingly larger magnetic
clusters must be forming in this material upon cooling.

Clusters nicely explain the direction independence of the measured signal, pro-
vided the cluster size is determined by a random process. This makes perfect sense for
a system where there is a competition between moments aligning, and moments being
shielded. Cool such a system down, and random moments will be shielded. Cool down
more, and more moments will be shielded. This is known as a percolation problem. Re-
moving more and more moments will result in isolated clusters of surviving moments.
The moments within such clusters then line up with their neighbors because finite size
effects (a consequence of quantum mechanics) dictate them to do so. These ordered
clusters will then scatter neutrons, revealing how many moments there are within the
clusters. Then when the temperature is lowered further, larger and larger clusters will
become isolated, yielding a stronger scattered signal characterized by a smaller width
in q-space.

Such microscopic detail of what happens in a system that is trying to satisfy
competing interest helps explain other unusual features of these types of systems that
have to do with resistivity and specific heat. What is really interesting for our purposes
though, is that all this was deduced from a straightforward diffraction experiment. All
that was needed for the success of this experiment was a careful setup (employing
graphite filters) and a plan of how to get rid off an unwanted background caused by
(incoherent) nuclear scattering events that could easily have overwhelmed the mag-
netic signal.

We will show some more examples of what is possible by doing diffraction in the
last section of this chapter. Next, however, we will look at some of the components
that are used on 2-axis spectrometers, such as the aforementioned graphite filters.

5.2 Components of a 2-Axis Spectrometer

The components of a 2-axis spectrometer can also be found on a triple-axis spectrome-
ter, which will be discussed in detail in Chapter 9. Since we do not change the incident
or final energy of the neutron, and since we do not measure as a function of energy
transfer, the choice of what option to use for which components is not nearly as im-
portant for a 2-axis spectrometer as it is for a 3-axis one. We therefore refer the reader
to Chapter 9 for most details, in this section we merely discuss those components that
determine the difference between a successful and a failed experiment.
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For a successful experiment, we must ensure that our interpretation of the data
is not plagued by inelastic effects as explained in the introduction. We can mini-
mize inelastic effects by choosing neutrons with high incoming energy, or equivalently,
neutrons that have short wavelengths. If we cannot get around the hurdle that the in-
elasticity problem represents, then we should do our experiment using a spectrometer
that measures energy transfers as well as momentum transfers.

For a 2-axis spectrometer, we can select neutrons with a sufficiently short wave
length using a monochromator crystal. Such a crystal is used to Bragg reflect neutrons
with wavelength λ out of the beam of neutrons that are traveling down the beam tube.
Thus, we are using Bragg’s law:

λ = 2d sin θm. (5.2)

In here, 2θm is the angle between the neutron beam and the beam of redirected neu-
trons of wavelength λ. We can think of θm as the angle under which the ’mirror’ (shown
in Fig. 2.4) is positioned. d is the distance between the planes of atoms that make up
the monochromator crystal. As we can see right away, a monochromator with a small
lattice spacing (such as copper) will select neutrons with a shorter wavelength than
when we use a monochromator with a larger lattice spacing, such as graphite.

Some diffractometers allow for the monochromator angle θm to be varied so that
the wavelength can be varied; in other instances, the monochromator ’take-off’ angle
is fixed. While the latter might seem unnecessarily restrictive, it does come with the
advantage that there are fewer moving parts, and therefore, one can do a better job at
shielding the instrument from unwanted background counts. Some diffractometers do
not allow the user to either change the monochromator crystal for another one, or vary
the take-off angle. It is up to the user to figure out if the diffractometer can nonetheless
be used for one’s experiment. Note that when using a triple-axis spectrometer, one can
vary both d (by dropping a different monochromator into the beam or by rotating the
existing monochromator) and θm.

For wavelengths λ that satisfy Bragg’s law, wave lengths λ/2, λ/3 etc. will also
satisfy our constructive interference criterium. Therefore, neutrons with shorter wave-
lengths will also be reflected out of the beam and directed at the sample. We call these
unwanted neutrons higher-order contamination, and they must be taken care of. If we
allow them to be detected, then these scattering events would correspond to double
the amount of momentum transfer that we are interested in, and we mess up our data.

Higher-order contamination is particularly problematic when we are studying an-
tiferromagnetic ordering. Higher order contamination gives rise to nuclear peaks being
detected at the same scattering angles as antiferromagnetic peaks, rendering it neigh
impossible to study (the onset of) antiferromagnetic ordering. For cases like this, we
use filters to remove the unwanted higher order neutrons, we use monochromator
crystals that do not allow for second order contamination to be reflected, or we use a
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velocity selector.

There are monochromator crystals that do not allow for second order reflection be-
cause of their diamond-like crystal structure. Of this family of monochromotors, silicon
is most widely used. In particular, the (111), (311) and (511) reflections are popular
choices. Note, however, that third order reflections are still allowed; these third order
reflections come in at 9 times the neutron energy of the uncontaminated beam. Unless
energies this high are cut out by other filters (such as a sapphire filter in the beam
tube), we would still have a contamination problem.

Filters can be very effective at getting rid off second and third order contamination.
The filter most commonly used is pyrolytic graphite. This filter can remove λ/2 and
λ/3 contamination from the beam, provided λ is suitably chosen such as λ= 2.4 Å.
Chapter 9 has a graph in it that can help the user in selecting the appropriate wave-
length. Typically, one uses 1 or 2 inch thick graphite filters when studying magnetic
excitations that would otherwise be contaminated by nuclear scattering. There exist
other filters similar to graphite, but we will not detail those here.

Another good filter option that operates in a slightly different way is employing Be,
or BeO. These materials only allow neutrons with wave lengths longer than 4 Å(Be) or
3.7 Å(BeO) to pass through. Shorter wave lengths are scattered out of the beam. This
is very useful for doing diffraction experiments that utilize long wave lengths, such as
experiments on biological materials or other systems where one is either interested in
long lattice spacings or in large structures. The downside of these filters is that they
have to be cooled down to liquid nitrogen temperatures in order to be effective in
transmitting the sought-after neutrons.

Yet another option for getting rid off higher order contamination is placing a ve-
locity selector in the beam. A velocity selector, such as the one shown in Fig. 5.8, is
essentially a set of blades- covered in neutron absorbing material such as Gd- that
rotate around an axis at just the right speed to allow neutrons of the desired wave-
length to pass through the channel between the blades. Neutrons that go much faster
or slower will end up being absorbed by the blades. Such velocity selectors are fre-
quently found on SANS instruments where they are also used to select the incoming
wave length without the aid of a monochromator, they are found at the end of neu-
tron guide tubes, and sometimes they are used on triple axis spectrometers such as on
Dualspec at CINS (Chalk River, Ontario).

One final set of components that merits our attention are collimators and masks.
Masks are moveable, or adjustable holes in a neutron absorbing material. These masks
are very good at cutting down on unwanted background that might be caused by the
neutron beam scattering off of the cryostat, humidity chamber, or furnace. The func-
tion of the mask is to ensure that only the sample is exposed to the neutron beam.
Masks are always good to use, we do not lose any useful neutrons, but we are able to
cut down greatly on the unwanted neutrons. Masks are normally placed on either side
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Fig. 5.8 Shown is a velocity selector as used at the small angle neutron scattering (SANS)

spectrometer Quokka at ANSTO in Australia (www.ansto.gov.au). When spinning, only neu-

trons of a certain velocity will be able to make it past the curved blades.

of the sample; that is, in between the monochromator and the sample, and in between
the sample and the detector.

The function of collimators is to cut down on the angular divergence of the incom-
ing and scattered beam. The collimators most frequently used are Soller collimators:
these consists of parallel blades that are made of Cd, or some other material painted
with Gd. Only neutrons that travel parallel, or close to the direction of the blades can
make it through (Fig. 5.9). The separation between the blades dictates the angular di-
vergence that the emerging beam can have upon exit. Since angle is directly related to
wave length and momentum transfer, collimators essentially determine the resolution
in q-space. That is, they determine what range of q-values will be detected around the
chosen q-value. Collimators have blades that are spaced apart in such a way that the
divergence of the neutron beam will be, typically, 80’, 60’, 40’, 20’ or 10’ upon exiting.
Clearly, the larger the divergence, the more neutrons will make it through, giving us
more counts. The choice of collimator therefore deserves careful consideration and it
should be based upon the desired q-resolution.

We will give a rough guide on how to calculate the q-resolution. This is only a
rough guide, free software exists to help the user with this task. The q-resolution can
easily be visualized for elastic scattering on a 2-axis diffractometer. Starting with the
equation for momentum transfer h̄q when neutrons of incident wave number ki are
scattered over an angle θ by the sample,

q = 2ki sin(θ/2)

we find the spread ∆q in q-values through differentiation:

∆q = 2 sin(θ/2)∆ki + ki cos(θ/2)∆θ.

Here, ∆θ is the acceptance angle of our collimation. Dividing these two equations leads
directly to
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Fig. 5.9 Soller collimators, as shown on the left (80’, commercially available), are straight-

forward devices. The divergence of the emerging neutron beam is directly related to the

spacing between the blades. Radial collimators such as the one made by the Missouri Physics

Department machine shop (right panel, used on CNCS at the SNS) serve the same function,

but they are designed for instruments that have multiple detectors, or position sensitive de-

tectors. The sample will be placed at the center of curvature of the blade assembly. For some

instruments the collimator is made to oscillate so that no single part of the detector(s) will

be permanently in the direct shadow of the blade. For example, the powder diffractometer

at MURR is equipped with an oscillating radial collimator.

∆q

q
=

∆ki

ki
+

∆θ

2 tan(θ/2)
.

Normally, the two terms on the right hand side are independent of each other, so that
we should add them quadratically:(

∆q

q

)2

=

(
∆ki

ki

)2

+

(
∆θ

2 tan(θ/2)

)2

. (5.3)

This equation tells us that if we are using collimators to reduce the second term on the
right hand side, then we do not need to worry about collimators for back scattering
(θ/2 = 90o). However, this equation also tells us that collimators will be important
for scattering at small or moderate angles. Alternatively, if you have a choice, position
your detector at large scattering angles; this way, you will not have to use very tight
collimators and you will count more neutrons.

The collimation also (partially) determines the spread in ki. In fact, the spread in ki
is determined both by the intrinsic mosaicity ∆θcrystal of the monochromator crystal,
and by the collimators acceptance angle ∆θ. This follows directly from Bragg’s law:

ki =
π

d sin(θm)
;

∆ki

ki
=

√
(∆θcrystal)2 + (∆θ)2

2 tan(θm)
. (5.4)

As long as one ensures that the angles are entered in radians, then these calculations
are not too terribly hard to perform. Should one also use a collimator between the
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reactor source and the monochromator (and one will), then a good approximation
for finding the effective acceptance angle for the pair of collimators is obtained by
reciprocally adding the two acceptance angles:(

1

∆θeffective

)2

=

(
1

∆θbefore

)2

+

(
1

∆θafter

)2

.

So far we have treated q-resolution as if it is one number, however, momentum
transfer is a vector, and therefore, the q-resolution will also have three components.
The full three-dimensional q-resolution is referred to as the resolution ellipse, and this
ellipse can be visualized using software such as RESLIB. Without using the software,
it helps to look at some actual data to develop some sense of this resolution ellipse.

We can think of the q-resolution as being separated in the resolution perpendic-
ular to the scattering plane (one component), and within the scattering plane (two
components). The resolution perpendicular to the scattering plane is not very good
on a 2-axis diffractometer. We tend not to use the words ’not very good’, instead we
call it relaxed. However, this relaxed resolution does not affect the interpretation of
our data (in most cases), since our data are measured as a function of momentum
transfer within the scattering plane, not perpendicular to it. The only instance we
have to worry about the vertical resolution is when we are studying the onset of order
and we need to know the absolute amount of scattering that is taking place so that
we can deduce the size of a magnetic moment that is subject to ordering. This does
not happen very often, so normally we do not have any vertical collimation in place.

The in-plane resolution is always important. In Fig. 5.10 we show the measured
q-resolution along the direction parallel to the direction of momentum transfer (longi-
tudinal), and perpendicular to it (transverse). These data were taken on a Bragg peak
of a single crystal. Nominally, Bragg reflection only happens when both the wavelength
of the incoming neutron is correctly chosen, and when the detector is just at the right
scattering angle. This should result in a very sharp delta-peak of the scattering: either
there is a lot of scattering, or none at all. However, in practice, this all-or-nothing type
of scattering is smeared out over a range of scattering angles and incident wavelengths,
giving us our resolution ellipse.

Looking at these actual data, we can read off from the figures by how much this
delta-function has been smeared out in the longitudinal and in the transverse direc-
tion. We find 0.034Å−1 and 0.023Å−1 for the longitudinal and transverse resolution,
respectively. We can compare this to the overall size of the resolution ellipse given
by eqn 5.3. For this particular experiment, 40’ collimators were used on either side
of the sample and on either side of the monochromator crystal, the incident neutron
wave length was λ=2.4 Å (ki=2.6Å−1), and the amount of momentum transferred for
the (002) reflection was 2 x 2π/c = 4π/10.5 Å= 1.2Å−1. The average scattering angle
θ is given by θ=2 x sin−1(2.4 Å/(2 x 10.5/2) Å) = 26.4o. The final piece of infor-
mation we need is that the PG002 reflection (with lattice spacing d=3.35Å) was used
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Fig. 5.10 The longitudinal (left panel) and transverse (right panel) resolution function for

the (002) reflection of a body centered system. The characteristic width (horizontal line) of

the scattering shown in the left panel gives us our longitudinal resolution, the right panel

corresponds to the transverse resolution. Note that the two resolution widths are not the

same. Also note the shoulder in the scattering in the right panel. This is caused by the single

crystal actually having some grains in it that are partially misaligned. This is what is called

the intrinsic mosaicity of a crystal. Transverse scans are a good way of probing this mosaicity.

to select the wave length of the incident neutrons. From this we calculate that θm=21o.

Let’s plug in these numbers into eqn 5.4 and eqn 5.3. For the effective acceptance
angle ∆θ that our monochromator crystal ’sees’ we use 40’/

√
2, and we take 30’ for

the intrinsic mosaicity of our PG monochromator crystal. With these numbers we find
that ∆ki/ki= 0.022. Putting these numbers into eqn 5.3, and using that the acceptance
angle that our sample sees (∆θ) is 40’/

√
2, since all collimators that were used were 40’

collimators, we find that ∆q/q= 0.028. Since q=1.2Å−1 we find that ∆q= 0.034 Å−1.
This number appears to be a reasonable measure for the resolution that is shown in
Fig. 5.10, at least for the purpose of doing quick calculations. Had we used collimators
that were 20’, then our resolution would have been twice as good (roughly). Not quite
twice as good since the intrinsic mosaicity of both the monochromator crystal and
our sample crystal would have played a more prominent role. In practice, one chooses
similar collimators at all positions except between the sample and the detector where
one uses a considerably more relaxed collimation.

Lastly, a very effective way of reducing ∆ki is to reduce ki itself. If we pick neutrons
that only go half as fast, then our ∆ki will be reduced, and provided we can still get to
our desired q-value, all scattering angles will increase with the accompanying increase
in the tangents that enter eqns 5.3 and 5.4.

5.3 Diffractometers With Area Sensitive Detectors

We mentioned that diffractometers with multiple detectors can collect data much
faster when the problem is suited to benefit from measuring multiple q-values at the
same time. We do not actually need separate detectors, we can also use position or
area sensitive detectors. Position sensitive detectors are long detector tubes, while area
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Fig. 5.11 When a crystal is oriented with a high symmetry direction parallel to the incoming

beam, then the various sets of lattice planes will select a neutron wave length out of a white

beam and diffract it at the corresponding Bragg angle. This figure shows neutrons coming

in (open arrows) parallel to the a-axis, and being diffracted by the (110) planes (green and

green arrows), and by the (111) planes (red, red arrows).

sensitive detectors are square or disk-shaped boxes. Such detectors not only detect that
a neutron hit the detector, but also where it hit the detector to within an accuracy of
a few millimeters. Position sensitive detectors tell us where along the tube the neutron
arrives; area detectors tell us both the horizontal and vertical position of where the
neutron entered the detector. So, from a data analysis point of view, such detectors
work as if we have a continuous assembly of smaller detectors, each a few millimeters
wide.

In our chapter on powder diffraction (Chapter 6) we we look at a position sensitive
detector. In this section, we will look at some special diffractometers that employ area
detectors. Area detectors are typically found on SANS instruments (Chapter 7), stress
diffractometers, and Laue cameras. Position sensitive detectors tend to be used on
powder diffractometers. We first describe the Laue camera that is used to determine
the structure and atomic positions of materials that have many atoms in a unit cell,
such as proteins.

When we stick a crystal in a neutron or xray beam, oriented in such a way that the
direction of incident radiation coincides with a direction of symmetry of the crystal,
then we can expect Bragg reflection to occur provided the incident wavelength is just
right. This can be seen as follows. For Bragg reflection to occur off of a specific set of
crystal planes separated by a distance d oriented at an angle θ/2 with respect to the
incoming beam (See Fig. 5.11), we must have that the required incident wavelength
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Fig. 5.12 Source: www.nmi3.eu. The structure of myoglobin is becoming better charac-

terized. Thanks to xray and neutron diffraction experiments performed by researchers at

München (Andreas Östermann) and at the Japan Atomic Energy Research Institute (Ryota

Kuroki), even the positions of many hydrogen atoms are now known. The top shows the

spatial structure of the myoglobin protein; the bottom the neutron Laue picture from which

the positions of 157 bound hydrogen D2O molecules could be determined.

is given by λ = 2d sin(θ/2). When this is satisfied, then the neutron will be scattered
into a particular direction as if the lattice planes form a mirror.

Since every neutron that is scattered will be scattered under an angle that depends
on its wave length, it actually makes sense to use a whole bunch of wave lengths at
the same time. This way, we will measure multiple Bragg reflections at the same time,
but since all Bragg reflections will correspond to different scattering angles, we can
still tell them apart by doing some thinking. The statement ’some thinking’ applies to
the fact that the scattering angle only yields the ratio λ/2d, however, we will be able
to measure so many Bragg reflections that we can deduce the size of the unit cell of
the crystal, and from there, determine all possible lattice spacings d. It should make
sense from this description that an area sensitive detector is required for a Laue camera.

Laue cameras are used for electron diffraction, xray diffraction, and neutron diffrac-
tion. We show an example of a neutron Laue pattern in Fig. 5.12. For this particular
example, proteins have been grown into a single crystal protein structure. In this case,
we are not actually interested in the lattice that proteins form as this can hardly be of
biological relevance, rather we are interested in the intensity of the spots. The intensity
of the spots is directly related to the structure factor of that particular reflection as
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Fig. 5.13 Ron Rogge of the Canadian Institute for Neutron Scattering CINS is setting

up an experiment to determine the thermal evolution of stress in a 3-component (Inconel,

Zr-2.5%Nb, & Stainless Steel) rolled joint. Note the two apertures that are used to define the

scattering volume (the long rectangular shapes, one of which is close to Ron’s left shoulder),

and the 90o detector angle. For this instrument (L3 at the NRU reactor), the spatial resolution

(defined by a volume element) ranges from 0.2 to 1,000 mm3. The resolution in lattice strain

is of the order 0.01%. Source: www.cins.ca.

given by eqn 4.6. Provided we collect enough reflections, we should be able to determine
the positions of all atoms within a protein, as well as their type. The protein structure
shown in Fig. 5.12 is based on a combination of xray and neutron Laue results. This
modern use of a Laue camera is different from its original use where the spots were
actually made visible on a photographic plate (hence the name camera) and the crys-
tal symmetry could be deduced from that; however, (at the time) the intensity of the
spots was not known to sufficient accuracy to determine which atom was sitting where.

Another important type of diffractometer is the residual stress diffractometer. Such
a spectrometer measures the strain in a material when it has been subject to stress(es).
Strain manifests itself as a change in lattice parameter d at a local level. Some areas
of a material might show compression, others might show expansion. The way strain
(∆d/d) is actually measured depends on whether the instrument is at a reactor source,
or at a spallation source. In both cases, Bragg’s diffraction law and the differentiation
thereof forms the basis of this type of measurement:

λ = 2d sin(θ/2);
∆λ

λ
=

∆d

d
+

∆θ

2 tan(θ/2)
. (5.5)

For a reactor source, we have that ∆λ equals zero, so that strain is measured by the
shift ∆θ of the Bragg peak. For a pulsed source diffractometer, we have that the detec-
tor position is fixed (∆θ=0), so that strain will be proportional to the change in wave
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Fig. 5.14 Tom Holden (second from left) and his team get ready to get out of the way so

that they can measure strains in this turbine when it is actually spinning. This spectrometer

(L3 at CINS) has since been equipped with a rig capable of applying biaxial stress. Source:

www.cins.ca.

length, which in turn will be proportional to the change in time of flight of the neutron.

It is possible to measure the strain in a small sub-volume of a large piece of ma-
terial, in situ. The trick here is to narrow down the incoming beam of neutrons, and
to put an equally restrictive aperture in the scattered beam. This way, the volume of
the material that the detected neutrons have scattered from (called the gage volume)
is given by the cross-section of these two beams. An idea of what these apertures look
like can be seen by scrutinizing Fig. 5.13. For most stress measurements, the detector
is placed at a 90o angle so that the volume being examined has an easy-to-analyze
geometric shape.

Stress diffractometers have been employed widely to study metal fatigue and how
metals break. Studies have been carried out on the wheels of trains, pieces from the
space shuttle, and even a Pratt and Whitney Gas turbine while operational (Fig. 5.14).
Also, many engineered materials harbor smaller grains. These grains can exhibit pre-
ferred orientations, which can enhance some of the properties of the materials. With
neutrons, these preferred orientations can be mapped out and spatial variations of this
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Fig. 5.15 The ENGIN-X instrument while it is measuring the residual stress within friction

stir welds on an Airbus prototype wing rib. This image, and the description, was taken from

the ISIS website. Source: www.isis.stfc.ac.uk/instruments/gem/

texture can be evaluated in most materials commonly used in industry, such as steel,
aluminum, titanium, zirconium, nickel-based alloys, ceramics and composites.

Multiple detectors, or position sensitive detectors can be helpful in the following
way. Since it is not clear whether a Bragg peak will have shifted to a smaller or larger
scattering angle, or even have shifted perpendicular to the scattering plane, it makes
sense to simply have a position sensitive detector cover a bunch of scattering angles.
Also, it is a big time saver, since one does not have to do the full scan over the diffrac-
tion peak (like the one shown in Fig. 5.10) in order to get the width and intensity of
it. The width is an important parameter when characterizing individual grains, while
the intensity is used to map out any texture in the sample.

One final instrument to mention in this section is ENGIN-X. This is the stress
diffractometer at the ISIS pulsed source. Its operational principle is based on a white
beam of neutrons coming in, and measuring the diffraction pattern in a detector at
90o. To make this diffractometer very efficient, multiple detectors have been placed
roughly at 90o spread over two banks, as shown in Fig. 5.15. This instrument has been
designed with accessibility in mind, and it can be used to study very large structures.
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As mentioned, the most widely used diffractometer is the Small Angle Neutron
Scattering (SANS) diffractometer. This instrument will be discussed in detail in Chap-
ter 7.

5.4 Exercises

Exercise 5.1

A multi-detector spectrometer such as the GEM spectrometer shown in Fig. 5.4
can collect data on liquids and amorphous materials very fast, but it is not that useful
for collecting data on single crystals. Explain why.

Exercise 5.2

When one is interested in following the phase transition of a magnetic system that
orders antiferromagnetically at low temperatures, and when the magnetic unit cell is
very large, what is the best experimental setup in order to obtain accurate data, free
from higher-order contamination?

Exercise 5.3

A piece of aluminum has been subject to stress, and it now has a strain of 0.1 %.
This means that ∆d/d=0.001. What minimal angular resolution must a reactor source
based diffractometer have for us to be able to observe a peak shift in the (111)-Bragg
reflections of aluminum? (d(111)= 2.33 Å)

If we use neutrons of incident wave length of 2.4 Å, and assuming that our monochro-
mator is a perfect crystal, discuss what collimators (acceptance angles) you would be
using for this experiment.
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Powder Diffractometers

The term powder diffraction refers to measuring the scattering pattern from a pow-
dered sample, as opposed to obtaining a diffraction pattern off of a single crystal. Pow-
der diffractometers are dedicated instruments optimized for collecting such diffraction
patterns; the term optimized refers to the ability to collect the pattern as fast as pos-
sible, or with as high a q-resolution as possible. Powder diffractometers are found both
at reactor sources and at spallation sources. They are the workhorse instruments when
it comes to determining the structure of materials.

A powder is a collection of very small crystallites, oriented randomly. Neutrons can
be Bragg relected from individual crystallites, provided these crystallites are oriented
in such a way as to meet the Bragg reflection condition (eqn 2.1 for neutrons of wave-
length λ and lattice planes spaced a distance d apart. As long as there are enough
crystallites, and as long as they cover all orientations equally, we can use the reflection
pattern to determine the structure of the material.

The advantage over doing single crystal diffraction is that the data collection is
much quicker, and we do not require our material to be a single crystal. The latter is an
obvious advantage as it is very difficult, sometimes even impossible, to obtain single
crystal samples. The disadvantage of powder diffraction over single crystal diffrac-
tion, namely that reflection peaks originating from different crystallographic planes
can overlap in scattering angle, was essentially resolved in the late sixties by Hugo Ri-
etveld. Rietveld came up with a method for fitting the scattered intensity that virtually
separates overlapping peaks. This method is now known as the Rietveld refinement
method, and we will say more about this method in section 6.4.

Any self-respecting powder diffractometer has multiple detectors, or position sensi-
tive detectors. The advantage of this is clear: we wish to measure the scattered intensity
at all momentum transfers, so we wish to cover the entire range of scattering angles
between 0 < θ < 180o. What better way to do this than to have multiple detectors
cover as much of this range as possible, or to utilize position sensitive detectors? We
show a schematic of a powder diffractometer at a reactor source in Fig. 6.2. We al-
ready showed the GEM diffractometer at ISIS spallation source in the previous chapter.

Not all powder diffractometers are the same. The user may have an option to select
the incident neutron wave length (such as is the case for D20 shown in Fig. 6.2), but
frequently the incident wave length is fixed. Typical incident wave lengths are in the
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Fig. 6.1 Hugo Rietveld, shown here on the beamport floor of the Petten research reactor

in the Netherlands, developed an algorithm for analyzing powder patterns that put powder

diffraction on par with single crystal diffraction.

range of 1-1.5 Å, allowing us to get up to momentum transfers of around 10 Å−1.
These are just ball park numbers, but there is no reason why we would want to go out
to much higher momentum transfers as the scattering at these high q-values mostly
yields information about individual atoms, not about the relative positions of atoms.
We discussed this effect in Chapter 4, and we will return to it in the section when
we discuss the Debye-Waller factor. Sometimes there is a need to actually go to lower
momentum transfers when one is interested in magnetic structures that have large
unit cells. Such spectrometers will be found at cold sources.

An important characteristic of a powder diffractometer is its q-resolution. This
tells us how easy it is to separate two peaks that occur at almost the same scattering
angle. The q-resolution is closely related to the angular resolution, but it also depends
on the scattering angle itself. Collimators help define the angular resolution, but the
type and shape of monochromator crystal, as well as the sample size are also impor-
tant elements in determining the overall resolution. Later on in this chapter we will
describe the powder diffractometer at MURR as an example of what can be achieved
in terms of optimizing the resolution without sacrificing too much in intensity.

We will first discuss some of the basics of powder diffractometers and show some
examples of what has been measured. This is followed by a look into the components
of these instruments in more detail, and into how to analyze the diffraction pattern so
that we glean the most about our samples.
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Fig. 6.2 Schematic of a powder diffractometer at a reactor source. The one shown here goes

by the name of D20, and it is located at the Institute Laue-Langevin (ILL) in France. Source:

www.ill.eu.

6.1 The Skinny

When neutrons are Bragg reflected from a single crystal, we observe that the neutrons
are being scattered into one particular direction or- when we take the instrumental
resolution into account- into a particular solid angle dΩ. When neutrons are being
Bragg reflected by a powder, we observe that the scattered intensity is spread out over
a cone, called the Debye-Scherrer cone. The apex angle of this cone is double the scat-
tering angle θ of the neutron. We show this in Fig. 6.3. We can visualize the scattering
as originating from a great many individual crystallites whose crystal planes all meet
the reflection condition. This is sketched in Fig. 6.4.

In a scattering experiment, we move a detector of fixed height over a range of
scattering angles (or we simply cover the entire range of angles with detectors so that
we do not have to move them), thereby intercepting part of the cone (Fig. 6.3). The
scattered intensity we measure is proportional to what fraction of the cone is being
intercepted by the detector, and to the strength of the reflection σcone. We wish to
determine the latter from our data as this number is a direct measure of the relative
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Fig. 6.3 Scattering for a particular reflection occurs at a Bragg angle θB = θ/2, which shows

up as scattered intensity spread out over a cone with apex angle 2θ (left panel). A detector

of fixed height, shown by the blue band in the panel on the right, will intercept a fraction of

this cone. This fraction depends on the scattering angle.

positions of the atoms in the crystal, and of what type of atoms they are:

σcone ∼ 〈
N∑

i,j=1

bibje
i~q.(~Ri−~Rj)〉. (6.1)

Note that we do not actually measure the dependence of σ on vector ~q, we only
measure its dependence on the length q of ~q given by q = 4π/λ sin(θ/2). We rely on
the Rietveld refinement algorithm to provide us with a model of the atomic structure,
from which the average over all crystallite orientations as contained within the brack-
ets < ... > of eqn 6.1 can be calculated and compared to the measured intensity.

As can be seen from Fig. 6.3, the amount of scattering that is intercepted by the
detector of fixed height depends on the scattering angle. If the detector of height h

Fig. 6.4 When crystallites are in the right orientation (the red ones), they will scatter the

neutrons. There are 2π orientations for a crystallite that will meet the reflection condition

without changing the angle of incidence of the neutron beam with respect to the lattice planes

that are Bragg reflecting the neutrons. When we view the problem in spherical coordinates,

the inclination will be fixed (the inclination is the angle with the zenith direction, and we

pick the direction of the incoming neutrons as the zenith direction), but that still leaves the

azimuth angle unspecified, giving us 2π degrees of rotation.
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is a distance R from the sample, then the fraction of scattering intercepted is given
by h/(2πR sin θ). Thus the observed signal in our detector will be proportional to
σcone(θ)/ sin θ. This angular dependence is in fact part of the full Lorentz factor, which
is given by the denominator of the following expression:

counts ∼
σcone

sin θ sin(θ/2)
. (6.2)

The origin is the term sin(θ/2) is not as easy to visualize as the sin θ term, since
it is a combination of three effects: how much of the sample is in the intersection of
the incident and scattered beam, over what range of angles will the scattering occur
(intrinsic resolution effect), and how many orientations are possible for a crystallite in
Bragg reflection. The third term yields the sin(θ/2) term, the first and second term
cancel each other out. The interested reader can look this up a standard text on neu-
tron or xray diffraction, or just have faith in the wisdom of our colleagues and take
this term for granted. The net effect of the Lorentz factor is to enhance the scattering
at low (near zero) and high (near 180o) angles compared to the scattering at 90o. And
the good news is that this factor does not complicate our analysis.

We show a typical powder diffraction pattern in Fig. 6.5. One of the first things
that can be observed in this figure is that at small q-values (low scattering angles) we
observe nice sharp peaks, but these peaks can be seen to diminish in intensity with
increased scattering angle. The second thing we notice is that the spacing between the
peaks gets smaller as we go from smaller to larger scattering angles.

The demise of the peaks with increased scattering angle is an interference effect
known as the Debye-Waller factor. As we have argued in preceding chapters, when
we probe the system at increasingly shorter probing wave lengths, we are more and
more susceptible to small deviations from a perfectly ordered structure. In liquids, we
notice this right away as there is no periodic structure and we only measure (to good
approximation) nearest neighbor distances. In solids, however, we have a similar effect
caused by the thermal and zero-point motion of the atoms around their equilibrium
positions. Denoting the position of atom j by ~Rj , we can decompose this position into

~Rj = ~Rj,eq + ~uj ,

with ~Rj,eq the time-averaged lattice position, and ~uj the deviation of atom j from
this average. When we look at the intensities of scattered waves, we will encounter
arguments of the exponential function such as:

ei~q.(
~Ri−~Rj) = ei~q.(

~Ri,eq−~Rj,eq)ei~q.(~ui−~uj) = ei~q.(~ui−~uj).

The last equality holds for q-vectors corresponding to a Bragg reflection as the
product ~q.(~Ri,eq− ~Rj,eq) will be an integer multiple of 2π in that case. As can be seen
from this equation, when q is large, the fluctuations around the equilibrium positions
will diminish the strength of the interference pattern, especially so when there is no
correlation between the fluctuations around the equilibrium positions of the atoms.



The Skinny 89

W. MONTFROOIJ et al. 287 

shape and the experimental points. We note that this 
particular instrument is prone to suffer from substantial 
asymmetry effects owing to the large ratio of detector 
height and sample--detector distance. We find that the 
peak shapes up to 20 = 30 ° are visibly affected, as ob- 
served by Cooper & Sayer (1975). Inclusion of this line 
shape in the RMC routine reduces the number of adjust- 
able profile parameters to the three parameters u, v and w 
that describe the resolution function, and allows for 
further refinement of these parameters. 

3. Results 

In Fig. 2, we present the powder pattern collected for 
YBa2Cu307_6 using the thermal source TAS3 multi- 
detector powder diffi'actomer (Als-Nielsen, Andersen, 
Broholm, Clausen & Lebech, 1988) at the Riso National 
Laboratory.* The spectrometer was operated at incoming 
neutron wavelength 4=0 .948  A, with 10' collimators 
between the monochromator and the sample and between 
the sample and each of the 20 detectors. The efficiencies 
of the detectors were normalized by means of a perspex 
standard. The scattering from the empty vanadium sam- 
ple holder was measured separately and turned out to be 
weakly angle dependent. Higher-order contamination 
was assumed to be negligible because of the use of 
Ge(711) as the monochromator crystal for which the 
second-order reflection is forbidden. The incident neu- 
tron wavelength and the zero-offset scattering angle were 
calculated from an independent A1203 powder scan. In 

* The numbered intensity of each measured point on the profile has 
been deposited with the IUCr (Reference: GL0423). Copies may be 
obtained from the Managing Editor, International Union of Crystal- 
lography, 5 Abbey Square, Chester CH 1 2HU, England. 
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Fig. 2. Observed ( + )  and calculated (solid line) powder profile of 
YBa2Cu307-6 as a function of scattering angle 20, for incoming 
wavelength 2 = 0.95 A. The calculated profile was determined using 
GSAS, yielding a weighted R factor Rw= 8.02 (~2=3.88). The 
difference curve is plotted in the lower half of the figure, while the 
positions of the reflections have been marked by the vertical bars. 

order to cover both the low- and high-angle reflections, 
we collected the data in two separate runs, which were 
combined after correction for the scattering from the 
empty vanadium can, using the region of overlap as a 
check for consistency between the two sets. Thus, our 
starting point for the structural refinement is a single data 
set that contains both coherent and incoherent scattering 
from the sample, as well as a multiple scattering contri- 
bution (sample-sample and sample-container). In the 
remainder of this paper, we approximate the scattering 
due to the incoherent cross section of the sample (both 
isotope and spin incoherent scattering), as well as the 
contribution due to multiple scattering events, by an 
angle-independent background. We justify this approxi- 
mation for the incoherent scattering on the grounds of the 
high incoming neutron energy used in the experiment 
(thereby carrying out essentially the full energy integra- 
tion with the aid of the detector, resulting in a flat in- 
coherent background). Whereas multiple scattering is 
likely to be angle-independent to a good approximation 
for a powder, it might nevertheless be advisable to try to 
minimize this for high-accuracy experiments. Since this 
paper deals mainly with the introduction of the RMC 
technique for powders, we did not pursue the latter issue. 

We analyzed the data with the Los Alamos General 
Structure Analysis System (GSAS) refinement package 
(Larson &von Dreele, 1986) in the orthorhombic Pmmm 
space group, using the standard Gaussian resolution 
function, modified for peak asymmetry as described in 
the literature (Rietveld, 1969; Cooper & Sayer, 1975; 
Thomas, 1977). We plot the calculated and difference 
profiles in Fig. 2, and list some of the atomic parameters 
in Table 1. The errors given in this table represent the 
uncertainties in the least-squares fit and therefore do not 
necessarily reflect the true physical error bars of the 
parameters. We refer to the literature for a plot of the 
unit-cell contents (Jorgensen et al., 1990). Within the 
accuracy of the data, nominal concentrations for the 
atomic sites were found, except for the occupancy of 
the chain sites O(1) and 0(5) (see caption of Table 1 for 
the labelling of the atoms). Substantial improvement of 
the fit was obtained by allowing for anisotropic Debye- 
Waller factors. However, this did not always result in 
physically meaningful values for all Uii, in the sense that 
some values appear to be too small for a sample at room 
temperature (see Table 1), which is a problem frequently 
encountered in powder refinements. 

We plot the results for the RMC analysis in Fig. 3. The 
calculated profile is based upon a simulation of 1088 
atoms (6 x 6 x 2 unit cells, so that the periodic box is 
almost a cube), using the results of the Rietveld 
refinement as input parameters (a = 3.8206, b = 3.8867 
and c = 11.6805 A). We calculated the diffuse scattering 
for every second allowed q point. The instrumental 
profile parameters u, v and w were further refined, 
whereas the peak profiles were calculated according to 
(2) and (3) ( s = 5  cm, d - 1 0  cm and r - 6 0  cm). A 

Fig. 6.5 An example of a powder pattern. The pattern shown, collected on YBa2Cu3O7 at

Risø, is displayed as the number of counts as a function of the angle over which neutrons

were detected. The data themselves are shown by points, the fit according to the Rietveld

refinement algorithm is shown by the solid line. The difference between the two is shown

separately at the bottom of the graph. All Bragg reflections that are allowed by the symmetry

of the unit cell are denoted by the vertical tick marks. The agreement of the fit is expressed

in two quality factors: Rw= 8.02 %, χ2= 3.88. Figure reproduced from W. Montfrooij et al.,

Journ. of Appl. Cryst. 29, 285 (1996).

This would be the case when we look at random thermal fluctuations of atoms sep-
arated by large distances: when ~ui and ~uj are uncorrelated, upon carrying out the
averaging contained in the brackets < ... >, we will see the average effects of how far
individual atoms have wondered away from the equilibrium positions. Thus, we would
only be averaging over the fluctuations of individual atoms. This is captured in the
Debye-Waller factor DWF:

DWF =< ei~q.(~ui−~uj ) >=< ei~q.~u >2= e−q
2(<u2

x>+<u2
y>+<u2

z>). (6.3)

This Debye-Waller factor is the reason why we do not measure out to very high
q-values: the interference pattern will have changed into the pattern of scattering by
individual atoms.

Our second observation from Fig. 6.5, namely that the spacing between reflections
gets smaller when the scattering angle increases, is fairly straightforward to explain.
We illustrate this for the case of scattering by a sample where the unit cell has a cubic
structure with side length a. The spacing between lattice planes dhkl for the Bragg
reflections corresponding to the Miller indices (hkl) is given by dhkl = a/

√
h2 + k2 + l2.
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Fig. 6.6 Measured examples of the angular resolution of the BT-1 spectrometer at NIST as

a function of scattering angle for various choices of monochromator. FWHM stands for Full

Width at Half Maximum, with maximum the maximum intensity in the smeared out Bragg

peak. Note that the axis labeling of ’2 theta’ refers to what we call θ in this write-up. Source:

www.ncnr.nist.gov.

Miller indices will be explained in section 6.3. Thus, the scattering angles θhkl are given
by

θhkl = 2sin−1(λ/2dhkl) = 2arcsin(
√

(h2 + k2 + l2)λ/2a). (6.4)

Thus, the (100) and (101) reflection will be well separated in angle since there is a
large difference between

√
1 and

√
2, but the (600) and (601) reflection will be quite

close since
√

36 and
√

37 are quite close.

Before we show some examples of what has been measured in powder diffraction,
we briefly mention the angular resolution of a diffractometer and the unwanted or
’background’ scattering. The angular resolution depends on the collimation that is in
place, but also on the scattering angle. In order to properly account for the measured
intensity of a Bragg reflection, we need to know over what angular range ∆θ the Bragg
peak (cone really) has been smeared out. In practice, we fit the angular resolution to
a three parameter model. These parameters are normally called u, v and w, and they
yield an angular dependent resolution function of the form:

[∆θ(θ)]2 = u tan2(θ) + v tan(θ) + w. (6.5)

We show examples of spectrometer resolution functions in Fig. 6.6. As can be seen,
the resolution is a smoothly varying function of scattering angle and therefore, it is
well suited to being fitted. More on the spectrometer resolution function can be found
in section 6.4.
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Fig. 6.7 This figure has been copied from the Paul Scherrer Institute (PSI) highlights of

2010, and it was published by S.A. Larregola et al. in the Journal of the American Chemi-

cal Society 132, 14470 (2010). The room-temperature crystal structure of Pb2TmSbO6 was

determined from neutron powder diffraction and synchrotron xray powder diffraction to be

the monoclinic C2/c space group. The material undergoes a series of structural changes upon

heating, culminating in the high symmetry cubic structure Fm-3m.

The word ’background’ in powder diffraction refers to all scattering that does
not give us information about the relative positions of the atoms. Thus, incoherent
scattering is lumped in with the background, and even the scattering by individual
atoms at high momentum transfers gets labeled as background. This is not entirely
correct of course, but if we are only interested in the positions and species of atoms in
a unit cell, and in the amplitude of the fluctuations around these positions, then from
an analysis point of view the rest is indeed ’background’. Or almost. In section 6.4 we
show an example of how we can slightly misjudge the amplitude of the fluctuations
when we label scattering by individual atoms- that has its origin in the coherent cross-
section- as background. Notwithstanding this caveat, it is not a bad approach to lump
all other scattering together as background.

When we analyze the scattered intensity as a function of scattering angle- or, scat-
tering profile for short- we model (fit) this background by a polynominal function in θ.
How many terms we need to include depends on the spectrometer and the spectrom-
eter settings. Typically, we start off our refinement using only a few parameters, and
we keep adding more as long as we get a significantly better agreement with the data.
This is more or less a case of trial and error, but it is good practice to make a separate
plot of the background after it has been fitted to make sure that our polynominal looks
sensible.

So let us look at some examples. In Fig. 6.7, we show the unit cell structure of
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Fig. 6.8 Figure reprinted from Th. Leventouri, Biomaterials 27, 3339 (2006), with permis-

sion from Elsevier. Shown is a projection down the c-axis of a synthetic CHAp containing

7.2% CO2, as calculated from a Rietveld refinement of room temperature neutron powder

diffraction patterns. The solid lines depict the bonds between the atoms labeled P, O1, O2

and O3 of the phosphate tetrahedra, the ellipses represent the (anisotropic) Debye-Waller

factors indicating how far, and in what direction, atoms can wander from their equilibrium

positions.

Pb2TmSbO6. This is a newly synthesized material and it was found to undergo a se-
ries of structural phase transitions upon cooling. Powder diffraction is the method of
choice to determine the crystal structure for new compounds.

We show an example of a synthetic material in Fig. 6.8 that is similar in crystal
structure to biological hydroxyapatites. Small differences in structure greatly affect
the bioactivity of these synthetic materials. Detailed measurements and Rietveld re-
finement allow for the testing (and refuting) of theoretical calculations indicating that
the hexagonal space groups are energetically unfavorable for hydroxyapatite crystal-
lization.

The Debye-Waller factors themselves present us with a wealth of information, es-
pecially when the amplitude of the fluctuations is different along different crystallo-
graphic directions. For instance, when we cool down a system through a structural
phase transition, we might already be able to see above the transition temperature
that the amplitude of fluctuation of a particular atom gets much larger along some
direction. This heralds the shift in position of that particular atom, and it shows that
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[010]

[100]

[010]

Figure 3 Anisotropic harmonic lithium vibration in LiFePO4 shown as green
thermal ellipsoids and the expected diffusion path. The ellipsoids were refined
with 95% probability by Rietveld analysis for room-temperature neutron diffraction
data. Expected curved one-dimensional continuous chains of lithium motion are
drawn as dashed lines to show how the motions of Li atoms evolve from vibrations
to diffusion.

one-dimensional continuous chain of lithium atoms is shown
in Fig. 3, and is consistent with the computational prediction
by Morgan et al.15 and Islam et al.16. Such anisotropic thermal
vibrations of lithium were further supported by the Fourier
synthesis of the model-independent nuclear distribution of lithium
(see Supplementary Information, Fig. S3).

The subsequent experimental direction was significant
enhancement of lithium motion by introducing a large number
of lithium defects at elevated temperatures to show how the
motions of Li atoms evolve from vibrations to diffusion. This
was possible with respect to the phase diagram of LixFePO4

reported in the literature, which is shown in the insets in Fig. 2.
Delacourt et al.6 and Dodd et al.20 confirmed the small miscibility
at low temperatures7,8, but also reported an unusual eutectoid
point at about 500 K where the solid-solution phase emerges
at approximately x = 0.6. At temperatures higher than 570 K,
solid solution dominates all compositions. Rapid hopping and
delocalization of lithium ions coupled with small polarons were
confirmed by motional narrowing of Mössbauer spectra in the
solid-solution phases formed at elevated temperatures11,21.

On the basis of the above binary phase diagram and
corresponding lithium dynamics, the composition and temperature
of choice for further neutron diffraction study were x = 0.6
and T = 620 K, as shown in Fig. 2b. A solid-solution phase
of 7Li0.6FePO4 was formed simply by mixing the endmembers,
7LiFePO4 and FePO4, in a 6:4 ratio and heating to 620 K in vacuum.
A significant difference of the neutron diffraction pattern with that
measured at room temperature (0.6LiFePO4 +0.4FePO4) is shown

in Supplementary Information, Fig. S4. Temperature-dependent
X-ray diffraction profiles were measured in a helium-sealed
cell before the neutron diffraction experiment, and confirm the
formation of a single phase of compositionally homogeneous
Li0.6FePO4 solid solution in the very narrow temperature range of
600–630 K, as shown in Supplementary Information, Fig. S5.

The first analysis carried out for the Li0.6FePO4 solid-solution
phase at 620 K was the Rietveld refinement for the neutron
diffraction profile and the resultant pattern is summarized in
Fig. 2b. The anisotropic displacement parameters were applied
for Fe, P and O, but not for Li, because no reliable solution
for harmonic vibration of lithium could be found under the
localized atom model (see Supplementary Information, Table S2).
To evaluate the dynamic disorder of lithium, the MEM was applied
to estimate the neutron scattering length density distribution,
which corresponds to the nuclear density distribution. The MEM
is a model-free method used to calculate precise nuclear densities
in solids, including some disorder and/or anharmonic vibrations
using experimentally obtained structure factors as an initial input.
The MEM is primarily an information-theory-based technique
that was first developed by Gull and Daniel22 in the field of
radioastronomy to enhance the information from noisy data.
Afterwards, Collins23 applied its methodology to crystallography
for electron density enhancement from X-ray diffraction. In the
theory of this methodology, information entropy, which deals with
the most probable distribution of numerical quantities over the
ensemble of pixels, is considered. Successful MEM enhancement
makes it possible to evaluate not only the missing and heavily
overlapped reflections but also any type of complicated electron
or nuclear distribution, which is hard to describe with the
classical structure model. By applying this method, possible bias
imposed by the empirical static structural model is reduced,
allowing any type of complicated nuclear distribution as long as
it satisfies the symmetry requirements. The validity of such a
methodology has been well established for plastic crystal24 and
various ionic conductors25–27.

A three-dimensional contour surface (0.15 fm Å−3) of the
nuclear distribution of lithium atoms is shown in Fig. 4. The
probability density of lithium nuclei strictly distributes into
the continuous curved one-dimensional chain along the [010]
direction, which is consistent with the computational predictions
by Morgan et al.15 and Islam et al.16. Other atoms, Fe, P and O,
remained at their initial positions even after the MEM analysis.
Given the two possible diffusion paths in Fig. 1, the microscopic
reason for the diffusion anisotropy could be the difference in
the electrostatic repulsion, which should be pronounced if there
are face-shared polyhedra. Along the [010] direction, whatever
the site occupied by the lithium ion during the diffusion process
(octahedral 4a site–intermediate tetrahedral vacant site–octahedral
4a site), there is no face sharing with other occupied polyhedra.
On the contrary, when the diffusion occurs along the [001]
direction, the intermediate octahedral site shares two faces with
PO4 tetrahedra; therefore, the presence of lithium in this octahedral
site is very unlikely, leading to a high activation energy. Recall that
lithium ions are localized on the initial 4a sites in stoichiometric
LiFePO4 at room temperature, but they possess small thermal
vibrations along the continuous one-dimensional distribution as
shown in Fig. 3. In Li0.6FePO4 at temperatures as high as 620 K, a
large number of lithium defects are thermodynamically stabilized,
and enough kinetic motional energy is given to each lithium ion to
overcome the hopping barrier of the excitonic Li+–e− pair10.

In summary, we applied the MEM to neutron diffraction
data for Li0.6FePO4 at 620 K, and successfully visualized the
one-dimensional curved lithium diffusion path in LixFePO4.
This provides the long-awaited experimental evidence for such

nature materials VOL 7 SEPTEMBER 2008 www.nature.com/naturematerials 709
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Fig. 6.9 This figure has been reproduced with permission from Macmillan Publishers Ltd:

Nature materials (Shin-ichi Nishimura et al., Nature materials 7, 707 (2008)), copyright 2008.

Powder diffraction can illustrate how vibrations of lithium atoms evolve into diffusion paths.

This was demonstrated by Shin-ichi Nishimura for the battery material LiFePO4. The Ri-

etveld refinement of the powder data indicated the tilting of the Debye-Waller ellipsoids

(green candies). The expected diffusive paths that characterize the motion of the lithium

atoms while depleting the battery are depicted by the dashed lines.

this structural phase transition is driven by a soft-mode. We can even observe that
these Debye-Waller ellipsoids will show some orientation relative to their neighbors.
An example of this effect is shown in Fig. 6.9 and it elucidates the diffusion pathway
of lithium atoms in a battery material.

6.2 Components of a Powder Spectrometer

The components of a powder diffractometer are very similar to those of a 2-axis diffrac-
tometer, so this will be a short section. We briefly discuss two powder diffractometer
designs: BT-1 at NIST and PSD at MURR. Both powder diffractometers are located
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Fig. 6.10 Powder diffractometers are workhorse instruments. The more used they look, the

better instruments they tend to be. Shown on the top is the PSD (Position Sensitive Detector)

powder diffractometer at MURR. Clearly, this must be a very good instrument. In fact, it is

one of the best designs in neutron scattering land. Shown on the bottom is the high resolution

BT-1 diffractometer at NIST (www.ncnr.nist.gov).

at a thermal source and both are designed to measure the structure of similar mate-
rials. We show photos and schematics of both instruments in Fig. 6.10.

The BT-1 high resolution powder diffractometer looks the most like a 2-axis diffrac-
tometer albeit with multiple detectors. The instrument has 32 detectors- spaced 5o

apart- so that the full angular range of 167o accessible to this instrument can be
covered 32 times faster. Collimators are placed between the source and the monochro-
mator, between the monochromator and the sample, and in front of every detector.
This instrument achieves its good resolution (Fig. 6.6) by using very tight collima-
tion: the collimators in front of the detectors are only 7’. There is a choice of three
monochromators, as shown in the schematic of Fig. 6.10. In all, this diffractometer
operates very much like a 2-axis diffractometer discussed in the previous chapter with
the same considerations pertaining to instrumental resolution applying in both cases.

The PSD powder diffractometer at MURR achieves its resolution from focusing
techniques rather than from collimators. The resolution characteristics of the instru-
ment were designed by Mihai Popovici (Fig. 6.11). The instrument does not use tight
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Fig. 6.11 Mihai Popovici (1939-2003) was one of the few people able to think in recipro-

cal space. One of his achievements is the design of the powder diffractometer at MURR.

This diffractometer combines high spatial resolution with high intensity through focusing

techniques both in real space and in reciprocal space.

collimators, yet it boasts a resolution not that different from BT-1. The instrument
design utilizes focusing both in real space as well as in reciprocal space.

The PSD uses a silicon monochromator to operate at a fixed incident neutron wave
length of 1.48 Å, using the (511) reflection of silicon, which is free from second order
contamination. The monochromator has been bent in such a way as to focus the wide
beam that comes down the beam tube into a narrow beam at the sample position.
This is shown in Fig. 6.12.

Normally when one uses focusing in real space, then one loses resolution on q-space.
However, in the case of PSD this does not happen because the real space focusing is
accompanied by a change in incident wavelength, as sketched in Fig. 6.12. These two
effects combine in such a way as to cancel each other’s change in q-resolution: in-
creased incoming wave length values are combined with decreased values for sin θm so
that the ratio of the two (determining the momentum transferred from the neutron
to the sample) remains almost constant. A clever feat indeed, resulting in a resolution
function (shown in Fig. 6.13) comparable to that of BT-1 (shown in Fig. 6.6).

On the PSD, there is no collimation between the monochromator and the sample,
but there is an oscillating radial collimator after the sample. Combined with the nar-
row size of the sample, these two elements ensure that the good q-resolution obtained
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Fig. 6.12 The monochromator for the powder diffractometer at MURR is composed of 9

bent perfect single crystal silicon blades 16.5 x 1.5 x 0.6 cm3. These are bent horizontally to

a 11.5 m radius to provide focusing in q-space and real space as well. Vertical focusing in real

space is obtained by mounting the individual blades in a polygonal approximation to a sphere

with radius 1.5 m. The monochromator is optimized for the use of small samples - the typical

specimen diameter being 3 mm. The focusing that ensues from using this monochromator is

shown in the panel on the right.

from the focusing monochromator is not lost. The radial collimator, made of metal
blades covered in GdO2 paint, oscillates so that not a single part of the detector is
in the permanent shadow of one of the blades. Behind this collimator is a shielded
detector casing that houses five position sensitive detector tubes (Fig. 6.14). Each of
the tubes covers an angular range of approximately 20o, and five tubes are stacked on
top of each other so as to intercept a larger fraction of the Debye-Scherrer cone. These
tubes can pinpoint the arrival of a neutron to within 1.5 mm. This number implies
that the effective detector size only spans 3 arcminutes (1.5 mm at a distance of 1600
mm), ensuring that we do not lose any resolution because of the effective width of the
detector. The detector casing moves in steps of approximately 20 degrees to cover the
full scattering range of 4.8 < θ < 105o.

Neutron powder diffractometers are very efficient at doing their job. In fact, they
are so efficient that one often employs automatic sample changers, such as the ones
shown in Fig. 6.15. SANS diffractometers also frequently use these changers. These
sample changers work well, as long as one does not require special sample environment
such as a furnace or cryostat.

6.3 Crystal Structures and Miller Indices

First, a very good source of information is Wikipedia, Crystal Structures. Also, Ashcroft
and Mermin do an excellent job of explaining crystal structures and Miller indices. This
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Fig. 6.13 The resolution function for the PSD powder diffractometer at MURR. Despite

the lack of collimation, the focusing techniques applied in the design of this diffractometer

combine to give a resolution comparable to BT-1 (Fig. 6.6). The fat solid line represents the

overall resolution, which is a combination of the four resolution elements shown by the thin

dotted lines. The horizontal axis shows 2θS , which is the full scattering angle we refer to as

θ in this booklet.

merely serves as a very short summary, all stolen from various places.

We can view a perfect crystal as being built from many smaller units, called unit
cells. These unit cells are small boxes with one or more atoms in them (and with one
or more chemical formulae), and they are placed next to each other and stacked on
top of each other to fill the entire volume of the crystal. The symmetry of the unit
cell, such as being cubic or hexagonal, can sometimes be seen at the macroscopic level
in the facets of a crystal. An example is shown in Fig. 6.16.

There are seven distinct possibilities for the symmetry of the unit cell, called the
seven lattice systems. Symmetry is related to rotating the unit cell around an axis
in such a way that everything looks the same after the rotation is completed. The
more ways in which this can be accomplished, the higher the symmetry of the lattice.
There are other symmetries possible besides rotating: for instance, we can imagine
mirroring the unit cell in some plane that bisects the unit cell. As long as everything
looks the same before and after we perform this action, we have a perfect crime and
we say that the lattice possesses this symmetry. The notation for these symmetries is
not immediately obvious, but letters such as m are used to indicate a mirror symmetry.

When there is more than one atom in a unit cell, we can further distinguish these
7 lattice systems into 14 Bravais lattices. Lattices with the highest symmetry are the
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Fig. 6.14 Shown are the position sensitive detector tubes employed on PSD at MURR.

Each detector has a 1” diameter and is a 24” long stainless steel tube. The outer wall is the

cathode, and the anode is a spring-tensioned nickel-chrome wire. The tube is filled with 8 bar

of 3He and 4 bar of argon with 5% CO2 gas mixed in. The detection efficiency of neutrons

with wave length 1.48 Å is 70%.

cubic lattices, the ones with the lowest symmetry are the triclinic lattices. All this is
summarized in Fig. 6.17. These 14 possibilities are further subdivided into 230 space
groups, depending on the contents of the unit cell. All space group possibilities are
described in the crystallographic tables of the society of crystallographers; these are
the blue fat books that every university has somewhere, even though they can never

Fig. 6.15 Typically, it does not require a lot of time to measure one powder pattern. A

sample changer allows one to measure multiple patterns, and still get enough sleep.
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Fig. 6.16 In large perfect crystals, the symmetry of the unit cell shows up in the facets of

the gemstone, such as in this piece of rhodochrosite at the Denver Museum of Nature and

Science.

be found because someone took them to their office and never returned them.

As an example, we show the three Bravais lattices associated with the cubic sym-
metry in Fig. 6.17. The ’simple cubic’ Bravais lattice, denoted by the letter ’P’ for
primitive, only has one atom in its unit cell (or 8 times 1/8th of an atom in the figure
shown). The ’body centered cubic’ lattice, denoted by the letter ’I’ for innenzentriert
(German), has two atoms per unit cell (one in the middle, plus 8 times 1/8 at the
corners in the figure). The third possibility, the ’face centered cubic’ lattice, has 4
atoms per unit cell (8 x 1/8 + 6 x 1/2).

When doing a powder refinement on a new piece of material, it is often not difficult
to figure out which of the 14 Bravais lattices we are dealing with. The space group
determination can be more tricky, and it can even be a matter of trial and error to see
if one space group (ultimately) results in a better fit than another group when doing
a Rietveld refinement. Always bear in mind that there is the possibility of the powder
having an impurity phase in it. When this happens, you will know because you cannot
find any space group that gives a satisfactory fit.

Neutron diffraction happens because the neutron is scattered by all the atoms in a
unit cell. The Bragg condition states that the probing wavelength has to correspond
to the separation between the planes that slice up the crystal in such a way that every
atom is accounted for. There are many ways (infinite really) of slicing up a crystal in
this way. Every which way will correspond to a particular separation d between the
Bragg planes and, therefore, to a particular Bragg scattering angle θB given by the
relation λ = 2d sin θB (with θ = 2θB). Miller indices are a way of denoting these planes
by three numbers (hkl), and they provide us with an intuitive way of counting down
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Fig. 6.17 Source individual graphs: Wikimedia Commons, author DrBob. The seven crystal

systems (cubic, hexagonal, tetragonal, orthorhombic, rhombohedral, monoclinic and triclinic

in order from highest to lowest symmetry) can be divided into 14 Bravais lattices when we

allow for more than one atom per unit cell.

over all possibilities.

The Miller indices are determined by where these planes intersect the axes in the
unit cell, and they are defined in the following way. If a plane intersect the a-axis at a
point halfway along the axis, then the h index of the Miller indices (hkl) is given by
the reciprocal of this intersection, h=2 in this case. We show some examples in Fig.
6.18 for the cubic case. A Miller index of ’0’ implies that the intersection happens at
infinity or, in other words, the plane would be parallel to that axis. A Miller index
with a bar above it, such as 2 implies that the intersection took place on the negative
side of the origin.

Miller indices can be used to calculate the amount of momentum transferred by
the neutron to the sample: ~q = h~a∗+ k~b∗+ l~c∗ with the reciprocal unit vectors ~a∗ etc.
given by:

~a∗ =
2π~b x ~c

~a.(~b x ~c)
;~b∗ =

2π~a x ~c

~a.(~b x ~c)
;~c∗ =

2π~a x ~b

~a.(~b x ~c)
(6.6)

For a lattice where all axes are perpendicular to each other, this results in |~a∗| =
2π/a, |~b∗| = 2π/b, and |~c∗| = 2π/c. Let us look at what this implies for a powder
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Fig. 6.18 Source: Wikimedia Commons, author Christophe Dang Ngoc Chan. Miller indices

(hkl) are both useful for specifying momentum transfer in reciprocal space, as well as for

picturing the planes of the lattice that give rise to Bragg reflections.

pattern from a cubic unit cell. The amount of momentum transferred q is given by
q = 2π/λprobe = 2π/d(hkl). We have introduced the notation d(hkl) to indicate the
separation between the lattice planes corresponding to the Miller indices (hkl). For a
cubic system where the length of the a-axis is a we find

d(hkl) =
a

√
h2 + k2 + l2

; q2
(hkl) =

4π2

a2
(h2 + k2 + l2). (6.7)

What does this mean in practice? When we do powder diffraction, we can calculate
q from the scattering angle, independent of what the structure of the sample is. So
we can replot our intensity not as a function of scattering angle, but as a function
of q2. The first allowed reflection would correspond to a certain set of Miller indices,
let’s say for the sake of argument to the (100) reflection. If we do a further replotting,
namely instead of plotting versus q2 we plot versus q2/q2

first, we would expect all the
other Bragg peaks to correspond to integer positions on the horizontal axis. For in-
stance, the (301) reflection would show up at a position of 10, representing 32 +02 +12.

If this is the case (all other reflections showing up at integer values), then we have
figured out the symmetry of the unit cell. We have not figured out the particular
Bravais lattice yet though. However, if we find that the higher angle Bragg peaks do
not occur at integer values when plotted this way, then this is because of two possible
reasons. First, perhaps the lowest angle reflection did not correspond to the (100) re-
flection, perhaps it was the (110) reflection or the (200) one. How to deal with this?
We simply try out these possibilities by replotting versus 2q2/q2

first, or 4q2/q2
first for

the case of the (110) reflection or the (200) reflection, respectively.
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Second, the above scheme may not work, we may find that some peaks show up at
integer values, but others do not. This implies that we do not have cubic symmetry,
but perhaps we have a tetragonal or orthorhombic symmetry. To deal with this, we
simply look at the peaks that are off, and we look to see if their positions reflect some
commonalities. For instance, we might be able to identify the (010) and (020) reflec-
tions, giving us the length of the b-axis. It takes some staring at the pattern, and some
punching in of numbers on the calculator, but it is the type of input that we need to
have before we can do a Rietveld refinement.

What is the unit cell is monoclinic, or even lower symmetry? It will still be pos-
sible to identify peaks that are located at integer fractions from each other. The best
approach here is to plot the data as a function of q2, and to look for such fractions.
Perhaps one can find a peak at q2= 1.4, and another one at q2= 2.8. These two peaks
have something in common, and we can label them to identify their kinship. Try to
find as many of these related reflections as possible, and then try to see if these families
can be related. The ones that are related likely belong to (h00) types of reflections,
others to (0k0) or (00l) families. Reflections belonging to more complicated lineage,
such as (hk0) are likely to remain unidentified at first. However, the ones that have

been identified can be used to calculate the lengths of ~a∗, ~b∗, and ~c∗.

The angles between the axes in a monoclinic system have to be found by looking
at one particular reflection such as the (hk0) reflection with smallest scattering angle,
and the angle between the axes has to be picked so that the reflection identified cor-
responds to an integer set of Miller indices. If the angle has been identified correctly,
then we should be able to identify all possible (hk0) reflections. If not, then we have to
try again with another reflection because the one we picked might have corresponded
to a more general reflection such as (hkl). It may sound like a time consuming pro-
cess, but it is not too bad really. The main trick is to make sure to plot the data as a
function of q2 and play around with trying to identify the reflections.

6.4 Rietveld Refinement and Reverse Monte Carlo Analysis

Looking at the powder pattern in Fig. 6.5, one can see that the analysis of the crystal
structure cannot be done by hand. In order to determine the structure of the mate-
rial, we need to determine the intensity of the various reflections, even when they are
overlapping. The Rietveld refinement algorithm does this for us, but it is not a black
box: it still requires some input.

The main piece of input is the symmetry of the unit cell. This means that we have
a choice of 230 space groups, and we have to pick one. In the previous section we
discussed how one can go about figuring this out by identifying the crystal structure
from the positions of the Bragg peaks, partially by trial and error. In this section we
will assume that the correct space group has also been identified, maybe by talking
to a chemist or maybe by not being able to obtain a satisfactory fit by choosing the
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wrong space group.

What are the next steps in the refinement of the powder pattern? We give an exam-
ple for the refinement of the nuclear unit cell. Note that there is no particular specified
order in what parameters to determine first, just some common sense considerations.
As a first step, we have to tell the fit program where the atoms are located in the unit
cell, and what type of atoms they are. Most of the time we have a rough idea, and a
rough idea is a good starting point. If we really do not know, then ask a chemist what
the likely positions are of the atoms given the chemical formula unit. Just put the
atoms in, and start with high symmetry positions (identified in the crystallographic
tables, the blue book). We also have to tell the program the lengths of the a, b and
c axes. We roughly know this number based on the positions of the Bragg peaks. Use
these rough numbers.

The way the refinement works is that we tell the program to vary the values of
some parameters, while keeping others fixed. We must do this in a step by step process
to prevent run-away fits. The first parameter that we will fit is the overall scale factor.
We leave all other parameters fixed at their initial guesses while we try to obtain the
best fit by varying the overall scale factor. Our next task is to get accurate numbers
for the a, b and c axes, for the zero-offset angle and for the incident neutron wave
length. We can get these without having to worry too much about where the atoms
sit in the unit cell, and what they are up to. As a first refinement, leave the lengths
of the a, b and c-axes as free parameters, as well as the zero-offset angle. Leave only
1 free parameters to fit as background, and use isotropic, fixed Debye-Waller factors
for all atoms (and fix their values at a fairly large number, we will worry about the
details later). Leave all other parameters fixed, including the incident wave length of
the neutrons, and run the fit until the goodness of the fit, χ2, reaches a stable value.

Now repeat the fit, but also allow the incident neutron wave length to be fitted.
After this run, we will have fairly accurate values for the a, b and c-axes, for the zero-
offset angle, and for the incident neutron wave length. Other than that, the fit will still
look awful since we have not looked at the resolution function of the spectrometer, our
atoms do not have the correct Debye-Waller factors, and our background is probably
underparameterized. And, the atoms might not sit at their correct positions within
the unit cell.

As a next step, we can try to refine the resolution parameters u, v and w. These
parameters affect the width (in angle) of the peaks, but leaves their integrated inten-
sity unaltered. As a first refinement of these three parameters, fix all other parameters
at their current values, and run the fit. Then unfix the parameters that we refined al-
ready while leaving u, v and w unfixed, and run another fit. We now have a reasonable
value for the resolution function.

Now it is time to play with the contents of the unit cell. Fix all parameters, but
unfix the Debye-Waller factors (but leave them isotropic). Run a fit. This should show
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a marked improvement in the quality of the fit as higher scattering angles. Unfix u, v
and w and run the fit again. Next, add a few more background parameters, perhaps up
to 6 in total and run another fit. We can now try to see if we can refine the positions
of the atoms in the unit cell that do not sit at high symmetry positions. For instance,
if we have atoms at (0,0,z) positions, leave z as a free parameter and run the fit again.

At this point, we are starting to get a reasonable fit, so it might be good to re-refine
the basic parameters, such as the length of the axes, the incident neutron wavelength,
etc. Do this in groups, that is, unfix certain values while keeping others fixed, before
doing a fit with all parameters unrestrained. Now it is time to have a detailed look at
the difference plot, the difference between measured data and the fitted curve.

One thing that will likely show up when looking at this difference profile is that
the Bragg peaks at the lower scattering angles do not fit very well. This is problematic
since these peaks are essentially unaffected by the Debye-Waller factors and, therefore,
carry great weight in determining the concentration of the atoms in the unit cell. So we
need to fix this as best as we can. The origins of this not-so-great-fit are well known:
the curvature of the Debye-Scherrer cone as it intersects with the detector. This causes
an asymmetry in the peak shape, and we show an example of this in Fig. 6.19.

As just mentioned, the origin of the asymmetry at low angles is the shape of the
Debye-Scherrer cone. When the radius of this cone, where it intersects the detectors,
is not much larger than to the height of the detector, then we will see the curvature
of the cone. We can exactly calculate this asymmetry effect, but it makes the fitting
of the scattering profile more cumbersome as we would have to carry out a numerical
convolution at each fitting step rather than simply using a gaussian line shape for our
peaks. While computer power is high enough these days to be able to do such a nu-
merical convolution at each fitting step without having to wait for too long, refinement
programs instead use asymmetry parameters to compensate for these deviations from
gaussian line shapes. We do not approve of this practice, but it is a fact of life.

We have some fitting parameters at our disposal to mitigate the asymmetry effects
at low scattering angles. Looking at Fig. 6.19, we can see that a gaussian line shape
would do scant justice to what is actually being measured. Adjustable (that is, free
parameters in the fit) peak shape parameters can capture most of the deviation from
a gaussian line shape, however, one should routinely scrutinize the agreement between
fitted peaks and measured intensities at low angles. Note that it actually is not im-
portant that the fitted curve follows the data, but it is important that the data and
the fitted curve yield the same intensity (surface area) for the peak. After all, it is the
intensity that is used for our structural determination, not the peak shape itself. So
play around with asymmetry parameters, and then inspect the difference plot to see
if we got the intensities correct.

Now that we have most parameters in place, we can try to squeeze the data fur-
ther to see if we can learn more about our system. Scrutinize the difference pattern,
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powder measurement, the incident neutron wavelength 
and the zero-offset angle. From this information, a 
'perfect' unit cell is constructed (i.e. the Debye-Waller 
factors are set to zero), which is copied manyfold so as to 
yield the desired total number of atoms for the 
simulation. These atoms are then moved around in a 
random fashion in order to obtain good agreement with 
the experimental data. The powder pattern is calculated 
by direct Fourier transformation of the atomic positions, 
for q vectors corresponding to the Bragg peaks, i.e. 

F(Iql) (x ~ _ , b i b j e x p [ i q . ( r i - r j ) ] ,  (1) 
id 

with bi the scattering length of the ith atom. Note that in 
RMC there are no longer symmetry-related reflections; 
the allowed reflections are actually determined by the 
supercell that is the simulation box. All moves are not in 
general desirable on physical grounds, e.g. when atoms 
approach each other too closely. To ascertain that the 
final configuration represents a physical system, moves 
that lead to unreasonably small atomic separations are 
not accepted, even when they yield a better agreement 
between the calculated and measured powder patterns. 
Atter convergence has been achieved, the simulation is 
allowed to continue in order to allow for configumtional 
averaging. 

One of the advantages that the RMC method has over 
the Rietveld refinement method is that the diffuse 
scattering can be directly monitored. This is achieved 
by calculating the scattered intensity for q vectors in 
between Bragg points. This can be freely done as long 
as the q vector for which the intensity is calculated 
fits the periodic volume, i.e. for integer values of 
1/(2n)(qxLx, qyZy, qzLz), with L i the length of the 
periodic box in the i direction. These additional q points 
are then treated in exactly the same way as the regular 
Bragg peaks (e.g. they are smeared out according to the 
resolution function). The calculated diffuse pattern is 
added to the regular Bragg peak intensities at each q 
point of the powder pattern, allowing for a comparison 
between calculated and measured intensity, without 
resorting to the introduction of an angle-dependent 
background. This of course relies on the fact that the 
data have been properly corrected for all other sources of 
background scattering. The obvious disadvantage of the 
procedure is that it is rather computer intensive since it 
effectively multiplies the number of Bragg peaks that 
have to be calculated after each proposed move by the 
number of unit cells. In practice, it suffices to calculate 
the diffuse pattern using only every nth allowed q point. 

Another advantage of the RMC method is that it is 
relatively easy to incorporate different forms for the line 
shapes of Bragg peaks encountered in neutron diffrac- 
tion. In particular, in carrying out a powder experiment 
using a reactor-based spectrometer, one has to correct for 
deviations from a purely Gaussian line shape caused by 
the finite sample and detector heights (Rietveld, 1969; 

Cooper & Sayer, 1975). These effects are most noticeable 
at small scattering angles 20. Rather than making use of 
an approximate line shape based upon asymmetry 
parameters, we have opted for a line shape directly 
based upon the intersection of the Debye-Scherrer cone 
with the detector, given by (for 20n < 90 °) 

I(20) = (IFh~al2/Tt){[1 + tan2(20)]/[tan2(20e) 

- tan2(20)]l /2}F(20) 
(2) 

with 

F(20) = 

{d + s - 2r  cos(20)[tanZ(2OB) -- tan2(20)]l /2/2s} 

0 < F(20) < 1 

0 F(20)_<0 or 2 0 > 2 0 8  

1 F ( 2 0 )  > 1 

(3) 

Here, Fhu is the structure factor corresponding to the 
Bragg peak with indices (hkl) at Bragg angle On, s and d 
are the sample and detector heights, respectively, and r is 
the distance between sample and detector. These line 
shapes are then convoluted with a Gaussian resolution 
function. As an illustration of this asymmetry effect, we 
plot the line shape of a low-angle Bragg peak in Fig. 1. 
The data points were collected on a Y-Ba2Cu307_ & 

powder of 5 cm height, using the multidetector powder 
diffractometer at Rise (Als-Nielsen, Andersen, Broholm, 
Clausen & Lebech, 1988) (d=  10 cm, 2=2 .37  A with 
10' collimation between monochromator and sample and 
between sample and detector). As can be seen from Fig. 
l, there is good agreement between the proposed line 
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Fig. 1. Observed (circles) and calculated [solid line, calculated using 
equations (2) and (3)] peak profile for the (001) reflection of 
YBa2Cu307_ 6. 

Fig. 6.19 Bragg peaks at low scattering angles clearly show asymmetry effects caused by

the curvature of the Debye-Scherrer cone. The data (black circles) are the same as in Fig.

6.5, the solid line shows the exact line shape calculated using geometrical considerations.

This exact line shape gives an excellent fit resulting in a close matching of the intensity

of the peak, however, using such a line shape requires a numerical convolution during the

fitting process. In standard Rietveld refinement, we approximate the asymmetry line shape

(by using asymmetry parameters) so that we do not have to carry out this convolution. Figure

reproduced from W. Montfrooij et al., Journ. of Appl. Cryst. 29, 285 (1996).

and check if the intensities of the peaks look correct. If not, then we can try leaving
the concentrations of the atoms in the unit cell as free parameters; this should only
produce modest differences in fit quality to the naked eye, but it still might improve
χ2 noticeably. Another thing to try is to see if anisotropic Debye-Waller factors might
give us a better fit, especially in unit cells that have low symmetry.

In a typical refinement we will have reached the point where we can essentially
leave all our parameters as free parameters and see what our final fit results looks
like. We can try adding more parameters to the background, but make sure that the
background (when plotted separately) looks like a smoothly varying function of angle.
If it does not, then either the instrument has a problem, or (more likely), we have not
learned all there is to learn about our system from the data we took.

If it still does not look right, then we have a few more parameters at our disposal.
We can try to see if we potentially have a preferred orientation of our powder grains,
or perhaps the grain size shows up as a broadening of the peaks. Perhaps we have
some strained grains. These are all parameters that can be used to try to obtain a
better fit, but use them with caution. A better fit might be obtained, but the result
may not be physical.
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Note that there is one correction that we do not have to worry about in powders,
but we do in single crystal diffraction: extinction. In powders, the grains are so small
that multiple scattering events can be neglected. In contrast, when we do single crys-
tal diffraction to determine the structure of a material as we do using a four circle
diffractometer, then we do have to worry about multiple scattering events, and correct
for them.

What to do when the result of our powder refinement is simply not good enough,
or does not reveal the information that one is interested in? At this point, standard
Rietveld refinement is probably not going to help, so it may be time to try a less user-
friendly, more hands on method. We briefly discuss the Reverse Monte Carlo (RMC)
method.

The Reverse Monte carlo method is a powerful method because it allows for ob-
taining more information from the data than is possible using standard Rietveld re-
finement. It is also a very dangerous method, since it is possible to obtain a perfect
agreement between the fit and the data at the cost of ending up with an unphysical
model. It is time-consuming to implement and, as far as we know, it has only been
applied once to the analysis of powder patterns, although it has been used many times
in the analysis of diffraction patterns from liquids.

When applying the RMC method to powder patterns, one starts with a collection
of unit cells with all atoms at their equilibrium positions. Thus, the input of the RMC
method are the results of a previous Rietveld refinement. One chooses the number of
unit cells in such a way that the refinement can be completed in one’s lifetime, but
typically one should choose this number to be as large as possible. One then ’moves’
one atom, chosen at random, away from its equilibrium position by a small amount,
and one calculates the powder pattern based on a direct calculation of eqn 4.6 using
the positions of the atoms. The resulting S(~q) is then averaged over all crystal ori-
entations, the Lorentz factor is put in place, and the pattern is convoluted with the
experimental resolution function.

After the ’move’, χ2 is calculated. If the new χ2 is better than the old one, then
the move is accepted. If χ2 got worse, then the move is accepted with an exponen-
tial probability given by e−(χ2

new−χ
2
old). This process is repeated until an equilibrium

is reached where, on average, one does not find any improvement is the quality of the
fit. Thus, RMC is similar to standard Monte carlo, but instead of minimizing the free
energy one minimizes the disagreement with the data.

One advantage of applying this RMC method is that the instrumental background
that is fitted is no longer angle-dependent. In fact, in the RMC method one actually
uses the ’background’ to learn more about the sample; the diffuse scattering is an inte-
gral part of determining the Debye-Waller factors of the sample. Another advantage is
that one can use the exact line shapes for the Bragg peaks, one does not have to resort
to asymmetry parameters. We show the result for such a RMC-refinement in Fig. 6.20.
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Fig. 6.20 The data shown are the same as in Fig. 6.5, but this time the data have been

refined using the Reverse Monte carlo algorithm on 72 unit cells, incorporating the exact line

shapes shown in Fig. 6.19. The overall quality of the fit is better than in Fig. 6.5. The flat

horizontal line is the angle independent background that was used as a free parameter, the full

’background’ (solid sloping curve) was calculated from the displacements of the atoms from

their equilibrium positions. This yields a slightly different background from the one found

using the standard Rietveld refinement (sloping dashed-dotted curve), with implications for

the Debye-Waller factors of the atoms. The agreement of the fit is expressed in two quality

factors: Rw= 6.18 %, χ2= 2.31. Figure reproduced from W. Montfrooij et al., Journ. of Appl.

Cryst. 29, 285 (1996).

In RMC, one calculates Debye-Waller factors from averaging over the deviations
from equilibrium positions of all atoms in all unit cells. This way, one can immediately
see if there are anisotropic Debye-Waller factors, or even split sites. The latter could
be a precursor to a (soft-mode driven) structural phase transition. Thus, the wealth
of information at one’s disposal has increased noticeably, at the cost of a much larger
time investment in refining the data.

We should be exceptionally careful when using the RMC method. When we use
100 unit cells with 10 atoms in each of them, we have 3000 free parameters at our
disposal when we ’move’ these atoms in the three spatial directions. We probably also
have about as many data points, so we can obtain a perfect fit, accounting for any
random errors in the data, or even for systematic errors in the data. To counteract
any unphysical ’movements’, we have to build in constraints such as imposing that
atoms cannot sit closer to each other than their filled shells allow. When imposing
such constraints correctly, then one will end up with a configuration of atoms in one’s
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computers that is as disordered as possible but still consistent with the data, as well
as with the physical reality.

The bottom line about methods such as RMC is that one can use them, but one
should only use them when standard Rietveld refinement does not do a good enough
job for the problem at hand. One example of this could be in hydrogen storage mate-
rials. When trying to determine the positions of hydrogen atoms and molecules inside
a crystal matrix, it makes perfect sense to use the information contained in the diffuse
background to refine the positions of the hydrogen atoms.

Finally, when doing refinements on magnetic systems, the level of difficulty asso-
ciated with obtaining a good and physical fit rises greatly. Magnetic unit cells have
more possible symmetries than nuclear unit cells, and the orientation of the magnetic
moments also affects the scattered intensity. This is good in the sense that one can
determine this orientation from the scattering pattern, it is bad in the sense that we
are getting to the stage that we have almost too many free parameters at our disposal.
We now have Debye-Waller factors, magnetic form factors, background parameters,
atomic concentrations, and orientations of magnetic moments that all influence the
intensity of the peaks. As such, these fit parameters have a tendency to become cross-
correlated, and one is in danger of obtaining a very good fit of the data that does not
actually represent what the atoms and their moments are doing in the unit cell.

When doing Rietveld refinement on magnetic systems, one should always collect a
powder pattern of the system at a temperature above the magnetic ordering tempera-
ture. This pattern can then be used to refine the nuclear unit cell and the instrumental
parameters. Then one can use these refined parameters as a starting point to refine
the data at the lower temperatures, making sure to leave the instrumental parame-
ters untouched. Some, but not all, Rietveld refinement programs allow for magnetic
refinements. An example of such a program is FULLPROF. Magnetic refinements are
very much hands-on, and one should always keep a look out for systematic discrepan-
cies between the fit and the data since this likely implies that there is a fundamental
problem with our refinement of the magnetic structure. Also, when one finds that the
magnetic moments have tilted in some odd way, such as away from a high symmetry
axis, then be doubly careful. More likely than not, this is an artifact of the fit.

6.5 Exercises

Exercise 6.1

The graph shows a powder pattern measured on a diffractometer. The aim of this
exercise is to figure out as many things as you can about the crystal structure. The
diffractometer was operated using an incident neutron wave length of 1.1 Å. The in-
strumental resolution has smeared out the Bragg peaks into a Gaussian lineshape. Try
to answer the following questions, but note that not all questions can be answered
necessarily. You will need a calculator and a ruler.
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Fig. 6.21 The powder pattern as a function of scattering angle θ for an unknown material

measured with incident neutron wave length λ= 1.1 Å.

a) What is the crystal structure, is it cubic, tetragonal or orthorhombic? (It is not
monoclinic, triclinic, rhombohedral or hexagonal).

b) What is the length (in Å) of the a, b and c axes?

c) How many atoms are there in the unit cell? If this cannot be answered, is it
possible to say whether it is one or more than one?

d) If there is more than one atom in the unit cell, are these atoms of the same
species?

e) The intensity between the Bragg peaks is non-zero. What could be the cause(s)
of this?

f) Why do the peaks at large angle become less and less pronounced?

g) Estimate the average displacement of an atom from its equilibrium position.

Exercise 6.2

The PSD diffractometer located at MURR that operates at an incident neutron
wave length of λ= 1.48 Å is very good for determining the positions of atoms in unit
cells, but is is not very good at determining the average displacements from equilib-
rium of those atoms. Why is this?
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Exercise 6.3

What are the main consequences of not taking into account the peak shape distor-
tion of the reflections at low scattering angles?

Exercise 6.4

Powders come with a packing fraction; the more one taps the sample holder, the
more powder one can fit into one’s sample holder and the stronger the scattered signal
will be. What can be a possible, unintended consequence of trying to squeeze as much
powder into the holder as possible?

Exercise 6.5

What is the crystal symmetry of the specimen shown here (Almandine, Fe3Al2(SiO4)3)?

Fig. 6.22 The Almadine garnet Fe3Al2(SiO4)3 shown in this picture is on display at the

Denver Museum of Nature & Science.
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Small Angle Neutron Scattering
Diffractometers

Before we start our discussion on small angle neutron scattering (SANS), we would like
to point out an exhaustive reference guide written by Boualem Hammouda of NIST.
We will make extensive use of this resource in this chapter. This reference guide, called
’The SANS Toolbox’ can be downloaded from:
http://www.ncnr.nist.gov/staff/hammouda/.

SANS is a method by which large structure can be studied. The usage of the word
’large’ here reflects that we are talking about structures that are much larger than
the size of a unit cell in a solid. SANS is a diffraction technique; hence, we will only
obtain information about these structures and their relative positions, we do not learn
anything about their movements. Fig. 7.2 displays some of the structures that can be
investigated as well as their morphologies. Note that anything ’large’ can be measured
on a SANS machine, it does not have to be a biological material or polymer. For in-
stance, vortex lattices have been studied extensively using SANS.

The SANS technique is capable of probing large structures through virtue of be-
ing able to resolve scattering processes that involve small amounts of momentum
transfer h̄q from the neutron to the sample according to the relationship λprobe =
2π/q. Using the expression for momentum transfer in an elastic scattering event

Fig. 7.1 Boualem Hammouda is the author of ’The SANS Toolbox’.
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are complementary methods. EM is applied on very thin samples only, it cannot measure 
samples at different concentrations and temperatures directly, and the observed images are a 
2D projection. SANS can do all these things but cannot produce an image in real space.  
 
SANS data analysis is performed at many levels. The initial level consists of “follow the 
trends” type of approach using standard plot methods. The next level uses nonlinear least 
squares fits to realistic models. The final trend makes use of sophisticated ab-initio or “shape 
reconstruction” methods in order to obtain insight into the structure and morphology within 
the investigated sample. Oftentimes, it takes independent information obtained from other 
methods of characterization to obtain a thorough understanding of SANS data because “most 
SANS data look alike”. SANS is not known for abundance in scattering peaks (unlike single-
crystal diffraction, Nuclear Magnetic Resonance, Infra-Red spectroscopy, etc) but enough 
features (i.e., “clues”) are available. Available models describe scattering from compact 
shape objects in dilute or concentrated systems as well as “non-particulate” scattering such as 
in the case of gel-like or porous media. SANS has been used for single-phase as well as 
multi-phase systems. Phase transitions have been investigated as well as the thermodynamics 
of demixing.  
 

 
Figure 1: Various classes of samples and morphologies investigated by SANS.  
 
 
3. THE SANS TECHNIQUE 
 
SANS involves the basic four steps used in all scattering techniques: monochromation, 
collimation, scattering and detection. Monochromation is performed mostly using a velocity 
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Fig. 7.2 Source: ’The SANS Toolbox’. The top row displays typical structures that are being

measured using SANS instruments, the bottom row shows possible morphologies.

[q = 2kinitial sin(θ/2)] we find the relationship between probing wave length and scat-
tering angle to be:

λprobe =
2π

q
=

λinitial

2 sin θ/2
≈
λinitial

θ
. (7.1)

Thus, in order to see large structures, we need to be able to measure scattering
events at small scattering angles. It certainly helps if we employ incident neutrons of
long wavelength λinitial as available at cold sources, but our main effort is to distin-
guish between neutrons that have scattered over small angles and neutrons that have
not been scattered at all (the straight through beam). This explains why SANS spec-
trometers tend to be located at cold sources, and why they have their familiar long
cylinder shape. We show the two SANS machines located in the HFIR cold source
guidehall in Fig. 7.3.

The length of a SANS spectrometer simply reflects that if we have a large distance
between the sample and the detector, then we can measure at smaller detector angles.
For instance, if we have a detector that represents a 5x5mm2 target for neutrons to
hit, then this detector would measure much smaller scattering angles when placed at
20 m from the sample and 5 cm from the straight through beam, then when placed 2 m
from the sample and 5 cm from the straight through beam. In addition, the spread in
scattering angles associated with the finite size of this detector would be much smaller
at 20 m than at 2 m.

The cylindrical shape of a SANS instruments is because of the disk shape of the
SANS detector, which in turn reflects the facts that the samples that tend to be mea-
sured on SANS machines do not have a periodic structure (like solids do). Instead,
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Fig. 7.3 The cold source guide hall at the HFIR reactor at ORNL houses two SANS instru-

ments, a 30 m and a 50 m SANS. Source: ORNL website.

SANS samples scatter very much like liquids and, therefore, only the magnitude of
momentum transfer is important, not its direction. In other words, we only need to
know the angle between the straight through beam and the scattered neutron, we do
not need to know whether the scattering plane is horizontal, vertical, or anywhere in
between. We show a typical SANS scattering setup in Fig. 7.4.
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selector. Collimation is preformed through the use of two apertures (a source aperture and a 
sample aperture) placed far (meters) apart. Scattering is performed from either liquid or solid 
samples. Detection is performed using a neutron area detector inside an evacuated scattering 
vessel. The large collimation and scattering distances make SANS instruments very large 
(typically 30 m long) compared to other scattering instruments.  
 

 
 
Figure 2: This figure represents the schematics of the SANS technique. It is not to scale with 
vertical sizes are in centimeters whereas horizontal distances are in meters.  
 
The SANS technique has been an effective characterization method in many area of research 
including Polymers, Complex Fluids, Biology, and Materials Science. Other areas such as 
magnetism also benefited from SANS. SANS instruments have been essential components 
for any neutron scattering facility for almost three decades. They provide the main 
justification for the growth and prosperity and are highly oversubscribed. New sample 
environments have given new momentum to the technique. These include in-situ shear cells, 
flow cells and rheometers, pressure cells, electromagnets and superconducting magnets, 
vapor pressure cells, humidity cells, in-situ reaction cells, etc. New advances in electronics, 
data handling methods and computers have made SANS a sophisticated “user friendly” 
characterization method for the non-experts and for “routine” characterization as well as 
cutting edge research.  
 
 
4. THE MEASURED MACROSCOPIC SCATTERING CROSS SECTION 
 
Consider a simple scattering system consisting of globular (think spherical) inhomogeneities 
in a matrix (think solvent). If this system is assumed to be incompressible, the SANS 
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Fig. 7.4 Source: ’The SANS Toolbox’. A SANS experiment is deceptively simple in its setup.

Essentially, we have a collimated monochromatic beam that is impingent on a sample. The

amount of momentum transferred to the sample is directly related to the polar scattering

angle. Note the highly exaggerated vertical scale in this schematic, where vertical distances

have been enlarged by a factor of 100.
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Finally, SANS instruments are housed inside large tanks. These tanks can be evac-
uated, or filled with an inert gas. Either way, the air is removed from these tanks so
that air scattering of the neutrons that go straight through the sample does not occur,
allowing us to measure down to very small scattering angles indeed. A typical SANS
machine can measure scattering angles down to θ= 0.2o, yielding a typical q-range of
0.001 < q < 1Å−1 for a 1 m2 detector. SANS machines and configurations are charac-
terized by their figure of merit, which is equivalent to the minimum q-value that can
be achieved for a given configuration. Some highly specialized SANS machines, called
ultra SANS or USANS can go down to even smaller scattering angles, however, they
achieve these very small scattering angles at the cost of cutting down on the intensity
of the beam. A relatively new technique, called SESANS, that might get around this
intensity problem is discussed in Chapter 10.

The above paragraphs deal with how we measure our samples from an instrumental
point of view, but not with what we actually measure about our samples. Compared
to what we have seen in previous chapters about neutron diffraction experiments, we
have two important modifications. First, the structures we look at are so large that
we cannot hope to be able to elucidate the positions of individual atoms. Instead, we
will be looking at scattering that originates from a small volume, so we will be talking
about a (three-dimensional) scattering length density ρ(~r), which is the product of
the number of particles in a given volume n(~r) and the average scattering length in
that volume b(~r). This product ρ(~r)=b(~r)n(~r) is what we aim to determine about our
sample. However, since diffraction experiments take place in reciprocal space, we will
only obtain indirect information about this product.

Second, what we can see (measure) depends on the contrast between the particles
we are interested in, and the solvent that these particles float around in. Our terminol-
ogy here is rather loose, and it is borrowed from colloidal suspensions (e.g., smoke, fog,
milk, paint). A typical SANS sample consists of the particles we are interested in, and
the matrix that surrounds them. For example, we can think of micelles in water, or of
a flux lattice penetrating a superconductor. In SANS experiments, the strength of the
scattered signal, the differential cross-section, is proportional to |ρparticles − ρsolvent|2.
We discuss in the next section why this is, but here we already alert the reader to two
consequences.

The first consequence is that we can use the technique of contrast matching to our
advantage. We can either ensure that we are scattering off of our particles or, if we
have multiple types of particles, we can make sure that we only scatter off of one type
as shown in Fig. 7.5. The second consequence is that similar to the case of reflectivity
experiments (Chapter 8), we have to deal with a ’phase problem’. Since the strength of
our scattered signal depends on a number squared, we would measure the same signal
independent of whether this number equals- for instance- 2, or minus 2. When we
are interested in the sign of this number, then we must perform multiple experiments
using various contrasts.
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Figure 3: Various contrast conditions.  
 
 
6. THE PHASE PROBLEM 
 
The so-called “phase problem” affects all scattering methods because measurements are 
performed in reciprocal (Fourier) space. In order to explain the issue, let us consider the 
simple case of a scattering medium (think solvent) of scattering length density ρg (think 
“grey” color), and two set of structures, one comprised of “white” spheres of scattering 
length density ρw and one comprised of “black” spheres of scattering length density ρb. 
Assume that the white and black spheres are identical except for their scattering length 
densities (i.e., “color” as appearing to neutrons) that are opposite. Also assume that the white 
spheres are hydrogenated (ρw < ρg) and the black spheres are deuterated (ρb > ρg). 
Microscopy is sensitive to the following differences ρw-ρg <0 and ρb-ρg >0 whereas 
scattering methods are sensitive to the following “contrast factors” (ρw-ρg)2 > 0 and (ρb-ρg)2 
>0. Both are positive and therefore appear the same. In order to defeat the phase problem, a 
second sample is necessary whereby the scattering length density of the solvent matches that 
of the black spheres for example (ρg = ρb). In this case the black spheres will be invisible and 
the white spheres will be distinct.  

 Finite contrast  Zero contrast 

 Multiple contrasts  Contrast match 

Fig. 7.5 Source: ’The SANS Toolbox’. For the case of particles in a solvent, there can be

a distinct difference in scattering length density between the particles and the solvent (top

left). When we contrast match the solvent to have the same scattering length density as

the particles (top right), then we do not expect any scattering at small angles. For the case

where we have multiple particles in our solvent (bottom left), we can selectively match the

scattering length density of the solvent to that of one of the particles in order to be able to

study the other particles (bottom right).

Contrast matching tells us how likely it is that neutrons will be scattered over small
scattering angles by our sample, it does not tell us the shape of the scattering profile
when measured as a function of momentum transfer q. The next section will deal with
this, followed by a section on the components of a (typical) SANS spectrometer. Our
discussion will be mostly at a conceptual level, we refer the reader to Hammouda’s
write-up for all the details.

7.1 The Skinny

When we discussed elastic scattering in previous chapters, we made a connection
between the differential cross-section and the static structure of the system:

dσ

dΩ
= Nb2S(~q).

When we looked (discussion around Fig. 5.5) at magnetic elastic scattering, we es-
sentially kept the same expression, but we put in a magnetic form factor to account
for the fact that we were no longer scattering from tiny entities (atomic nuclei), but
rather from extended electron clouds (also see eqn 9.1 and Fig. 5.6):

dσ

dΩ
∼ F (~q)2S(~q).
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The form factor F (q) is an interference effect. Neutrons scatter from the entire elec-
tronic cloud, with the result that, once the probing wavelength becomes comparable
to the size of the cloud, we will see reductions in scattered intensity because not all
regions of the cloud are being probed with an identical phase.

In small angle neutron scattering experiments we will experience the same phe-
nomena, resulting in a form factor that is determined by the size and shape of our
particles. For instance, imagine a large spherical molecule that is probed using a prob-
ing wavelength that is comparable to the diameter of this molecule. This implies that
if we were to depict this scattering event as an interference diagram such as the one
shown in Fig. 2.3, then we would have that half of the molecule would be in a re-
gion close to a ’white band’, and the other half would be close to a ’dark band’. The
scattering from these two regions would be out of phase, and therefore, we would not
observe any scattering because of the resulting destructive interference. This is shown
in Fig. 7.6.

We can summarize the above reasoning in an equation that tells us the connection
between the differential cross-section on the one hand, and between the contrast of
the particles and the solvent, the shape of the particles, and the relative positions of
the particles on the other hand:

dσ

dΩ
= Np|∆ρp|2P (q)S(q) . (7.2)

In this equation we have dropped the vector subscript from q since we are dealing with
scattering from a non-periodic structure. |∆ρp|2 is a measure of how much a single
particle scatters while submerged in the solvent (details to follow), Np stands for the
number of particles in our system, and P (q) is the form factor of the particles we
scatter from (the equivalent of F (q)2 in magnetic scattering). Note the change in def-
inition of the form factor between SANS notation and magnetic scattering notation.
We have done this to be consistent with the nomenclature in SANS experiments.

Eqn 7.2 is the master equation for interpreting SANS experiments. It is also a
beautiful equation in the sense that everything relevant to the scattering has been
nicely factorized. The one caveat about this equation is that it is only valid in the
limit of single scattering, something which sometimes can be a problem for hydroge-
nous samples.

The contrast factor |∆ρp|2 tells us how much scattering we can expect from a
particle. It is formally defined for a particle of volume Vp as

∆ρp =

∫
Vp

d~r[n(~r)b(~r)particle − n(~r)b(~r)solvent].

The main function of this equation is for planning what solvent to use. However, we
can also look this up in a table as the scattering length densities for most molecules
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of interest have been tabulated (see Appendix B). The most interesting aspects of our
sample are hidden in the form factor P (q) and, to some lesser extent, in the static
structure factor S(q). Before we look at these, a quick, two paragraph intermezzo of
why we use ∆ρ as opposed to ρ. This intermezzo can be skipped and the reader can
move on to the discussion about form factors without losing the train of thought.

In the continuity approximation, where we do not deal with individual atoms but
rather with scattering length densities ρ(~r), the differential cross-section is given by:

dσ

dΩ
= |
∫

sample

d~rρ(~r)ei~q.~r|2. (7.3)

8-7

Small Angle Neutron Scattering (5)

j = 8°

j = 3°

SANS: for small angles the ’probed sizes’ grow rapidly!

Fig. 7.6 The particles investigated by doing small angle neutron scattering are so large that

even at small scattering angles we lose some of our constructive interference. In scattering

experiments, this shows up as the particle’s form factor P (q). In the bottom panel (scattering

angle θ= 3o) the loss of constructive interference is only moderate since λprobe > particle

size. The top panel (scattering angle θ= 8o), however, represent an almost complete loss of

constructive interference since λprobe ≈ particle size. Conversely, we can infer the shapes of

the particles by measuring this demise of constructive interference with increasing scattering

angle. Source: neutron scattering course by Ignatz de Schepper.
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This equation is not all that mysterious when we realize that the scattering length
density for a system of N particles located at positions ~Ri is formally given by

ρ(~r) =
N∑
i=1

biδ(~r − ~Ri). (7.4)

Note that in this definition, the summation goes over all atoms, both the atoms that
make up the SANS particles we are interested in, and the atoms that make op the
solvent. Also note that if one is a physicist, then one can quickly realize that the
above equations are nothing more than a rewrite of the expressions for the differential
cross-sections that we have already used in previous chapters. If one is not a physicist,
then the only important thing to notice is that the differential cross-section depends
of ρ(~r), as opposed to ∆ρ(~r).

We can decompose the scattering length density ρ(~r) into the scattering length den-
sities of the SANS particles ρp(~r) and that of the solvent (or matrix) ρm(~r): ρ(~r)=ρm(~r)
(when in the solvent), and ρ(~r)=ρp(~r) (when we are dealing with a particle). When
we substitute this decomposition into our expression for the differential cross-section
(eqn 7.3) we find

dσ

dΩ
= |
∫

sample

d~rρm(~r)ei~q.~r +

∫
all particles

d~r[ρp(~r)− ρm(~r)]ei~q.~r|2. (7.5)

The first term does not contribute to the scattering in the SANS regime. We only
expect scattering from a uniform solvent when we probe is using wavelengths compa-
rable to the interatomic spacings; when we use SANS probing wavelengths we will not
observe any constructive interference patterns given the non-periodic (a.k.a. random)
nature of the solvent. We already encountered this in Fig. 4.7 where we did not observe
any scattering from a liquid at low q-values. Therefore, for small q-values, only the
second term will contribute, yielding the ∆ρ terms that appears in the cross-section
for SANS experiments (eqn 7.2). This ends our little intermezzo.

The form factor tells us about the size of our particles, about their shapes, and
about whether they are solid, hollow, or even fractal. In fact, the appearance of the
static structure factor can be a nuisance in determining the form factor P (q). We
illustrate this in the following example. Picture a collection of particles that have a
form factor P (q) and a static structure factor S(q). What we will get out of SANS
experiments is the product P (q)S(q). This is shown in Fig. 7.7 for various concentra-
tions of particles.

Fig. 7.7 nicely illustrates how the static structure factor can become a problem in
determining the form factor: normally we do not know the form factor before hand,
it is what we are after in a scattering experiment. After all, from the form factor we
can determine something about the structure of our particles. So we would like to do
our experiments in the low concentration limit where we will not find any correlation
between neighboring particles, so that S(q) = 1, and so that our scattering directly
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Fig. 7.7 The top panel shows the form factor of ’Gaussian’ spherical particles of radius R.

The middle panel shows their static structure factor S(q) for three concentrations c = NpVp/V

of Np particles of volume Vp in a sample volume V . The bottom panel displays what we can

infer from a SANS experiment about the product P (q)S(q). Source: neutron scattering course

by Ignatz de Schepper.

yields the form factor P (q). But, in order to get a decent scattering intensity, we have
to add more particles to the solution so we cannot work in the very low concentration
limit. But when we add more particles, we also have to consider the static structure
factor.

We can overcome the above problem through modeling, and by taking proper care
when we prepare the sample so that we know what the concentration of particles is.
The modeling will involve coming up with a model for the static structure factor of
the particles in the solution. These models, based on hard sphere theory, are actually
quite accurate (especially at low concentrations), although they are not perfect. Al-
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ternatively, the static structure factor can be measured by other means, such as by
using light scattering methods. In the end, the experimentalist will have to come up
with a consistent model, where the radius R of the particles and their concentration
not only describes the form factor, but also the static structure factor.

We now turn our attention to the form factors themselves. The form factors of
particles that can be described by an analytic expression can easily be calculated
through means of Fourier transform from real space to reciprocal space. We show
some examples in Figs. 7.8 through 7.10. In practice, one compares the scattering pro-
file qualitatively to the possible form factors, and one then concludes what type and
shape of particle one is looking at.

An important measure characterizing the size of a particle is the Guinier radius RG
(used interchangeably with the term radius of gyration), which is essentially a weighted
distribution of the mass of a particle akin to the moment of inertia. For instance, for
a hollow sphere of radius R we have that RG = R, while for a solid sphere we obtain
R2
G = 3R3/5. In neutron scattering experiments, the Guinier radius dictates the fall

off of the form factor at small q-values as q: P (q) = 1−q2R2
G/3+ .... In short, if we are

able to determine the form factor of our SANS particles from our SANS experiment,
then we can determine the shape and mass distribution from the qualitative behavior
of the form factor, and we determine their characteristic size from the fall off (with q)
of this form factor.

We can have many different shapes of particles, from needles to disks. The form
factors for all these particles can be calculated, and we refer the reader to the SANS

Fig. 7.8 The form factor P (q) for a particle whose scattering length density ∆ρ(s) falls

of according to a Gaussian distribution with distance s to the center of the particle. The

’radius’ RG of this particle is defined by the characteristic width of the Gaussian distribution

[∆ρ(s) ∼ e−αs
2

; R2
G = 3/(2α)]. For this type of density distribution, the form factor is given

by P (q) = e−q
2R2

G/3. Source: neutron scattering course by Ignatz de Schepper.
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Fig. 7.9 The form factor P (q) for a solid sphere of radius R =
√

(5/3)RG is given by

P (q) = 9[j1(qR)]2/(qR)2. For large q the form factor falls off as P (q) ∼ 1/q4. Source: neutron

scattering course by Ignatz de Schepper.

toolbox for the details. Every parameter that describes a shape parameter of the par-
ticles will show up in the SANS experiment as a characteristic q-value. We show an
example for cigar shaped particles in Fig. 7.11. With increasing q-values, the form
factor will reflect the decreasing relevant length scales R: qcharacteristic ∼ 1/R. For the
largest q-values, where we probe the smallest length scales corresponding to the inter-
nal structure of the particle, we find a powerlaw behavior where the scattered intensity
is proportional to 1/qn. For solid cigar-shaped particles, we find that the drop off in

Fig. 7.10 The form factor P (q) for a hollow sphere of radius R = RG is given by

P (q) = [j0(qR)]2. For large q the form factor falls off as P (q) ∼ 1/q2. Source: neutron

scattering course by Ignatz de Schepper.
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this region is similar to that of a solid sphere (∼ 1/q4), since both objects represent
solid, uniform masses when probed on length scales smaller that any characteristic
size related to the shape of the particles. In general, when the probing length scale
becomes smaller than characteristic length scale, then we refer to this region as the
Porod region.

In fact, the high-q behavior of the form factor is very useful when it comes to de-
termining whether a particle is solid, or not. When we plot our form factor on a log-log
scale, we can determine this high-q fall off quite easily. We have already seen some
examples of this high-q behavior for solid and hollow spheres, but we can have more
possibilities in general. For needles, or cigar shaped particles, we will find that n=1 as
long as our probing wavelength is smaller than the longest dimension of our needles
(the length of the needle), while being larger than the shortest dimension (thickness
of the needle). As we have seen, a value of n= 4 represents a solid object. We can
also have non-integer values for n, representing a rough surface characterized by a
fractal dimension D. For this latter case we find that n = 6 −D. These numbers are
summarized in Fig. 7.12.
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Figure 4: Form factor for a cylinder showing the low-Q Guinier region, the intermediate-Q 
Guinier region and the high-Q Porod region.  
 
Similarly for a lamella (flat object) of thickness T, the intermediate-Q Guinier approximation 
becomes: 
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3. THE POROD LAW 
 
Consider the case of an infinitely dilute solution of spheres of radius R and smooth surfaces. 
The scattering intensity is given by: 
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Fig. 7.11 Source: ’The SANS Toolbox’. Shown is the calculated form factor for cigar shaped

particles of length 100 Å and of thickness 10 Å. Note that the form factor is shown on a log-log

scale. At low momentum transfers we find a drop off of the form factor that is characterized

by P (q) = 1− q2R2
G/3 + .... Once the probing wavelength becomes smaller than the length of

the cigars, but still larger than their thickness, then we observe a power law behavior ∼ 1/q

characteristic of very thin needles. Once the probing wavelength becomes smaller than the

thickness of the cigars, then we observe a 1/q4 behavior as expected for solid objects.
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Figure 7: Assortment of Porod law behaviors for different shape objects.  
 
 
5. THE ZIMM PLOT 
 
Another well known plot is the Zimm plot (1/I vs Q

2
) which found wide use in light 

scattering from dilute polymer solutions where extrapolation to zero Q and zero 
concentration yields the molecular weight, the radius of gyration and the second virial 
coefficient. The Zimm plot is also useful in polymer blends (in the single-phase region) 
where the slope is proportional to the correlation length, which is proportional to the Flory-
Huggins interaction parameter (incompressible RPA model) to be described later.  
 
Assume a Lorentzian form for the Q-dependence of the scattering intensity:  
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Fig. 7.12 Source: ’The SANS Toolbox’. The Porod region refers to the high-q behavior of the

form factor. High q-values imply small(er) probing wavelengths, so that we are probing the

structure of the particles themselves. The radius of the red circles is given by the probing wave

length. The top row displays smooth objects (1-, 2- and 3-dimensional) and their expected

q-signature in the form factor P (q) as measured in a SANS experiment. The bottom row

shows the expected q-dependence in the Porod region for fractal objects. The two objects on

the left are self-avoiding polymers and spaghetti polymers, the three objects on the right of

this lower row are mass fractals.

The above discussion on form factors related to the case where all our particles
that are floating around in the solution have the same size and shape. In general, we
can expect, at least, some variation in their sizes. This is referred to as polydispersity,
and an example of this for hollow spheres is shown in Fig. 7.13. The particle sizes
are now characterized by an average radius and by a distribution D(R) around that
radius. The average radius will take on the role of uniform radius in the initial fall-off
of the form factor, while the distribution D(R) will modify the intermediate fall-off
of the form factor. This is shown in Fig. 7.14. For very large q we still find that the
form factor falls of according to the (same) power law (in q) that characterizes the
shape of the particles (not their size). Thus, the form factor of polydisperse particles
is more difficult to interpret, but SANS does provide a very good tool for measuring
the degree of polydispersity.

The form factors discussed above are shown as a function of q, whereas the SANS
detector is a two-dimensional detector. In order to go from the data as collected by the
detector to function of a single variable, we need to perform averaging. For scattering
that only depends on the polar angle (and not on the azimuthal angle), this averaging
is shown in Fig. 7.15. This is the case where our SANS data will be most accurate
in (ultimately) determining the form factor. For the cases where we do have some
directional dependence (some examples are shown at the end of this section), we can
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Fig. 7.13 Schematic of a polydisperse collection of hollow spheres. This collection of spheres

can be characterized by an average radius < R > and a distribution D(R) around the average

radius. Source: neutron scattering course by Ignatz de Schepper.

only average along certain lines of symmetry.

We finish this section by showing some examples of actual systems that have been
measured using the SANS technique. As mentioned, the radius of gyration RG is an
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T, d and ΔΩ are the sample transmission and thickness and the solid angle subtending one 
detector cell. SANS data in peripheral detector cells and those close to the beamstop are 
masked out in order to keep only the reliable data. Then the 2D corrected and scaled data are 
radially averaged to produce 1D data. Circular binning is the norm for isotropic scattering. 
Sector or rectangular averaging is used for scattering with anisotropic features.  
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Figure 1: Typical SANS data image. Radial averaging consists in forming circular bins in 
which data are summed up.  
 
 

Fig. 7.15 Source: ’The SANS Toolbox’. For scattering by particles that do not show any

directional dependence, we perform the averaging over the intensities as measured by the

detector along circular paths (one of which is shown). The bottom and left hand scale display

the positions on the detector where the neutron hit it in millimeters; the top and right hand

scale display the momentum transferred by the neutron to the sample along the horizontal

and vertical directions in Å−1. The number of neutron counts in each element of the detector

is indicated by the color scale in the right panel. Note that the number of counts have been

normalized, the numbers on the right no longer directly represent the number of counts.

important measure characterizing the size of the particles, and this radius can be de-
termined from the low-q behavior of the form factor. As long as we are looking at
dilute solutions, we can safely assume that S(q)= 1 so that we can directly determine
RG from our scattered intensity I(q). An example of this is shown in Fig. 7.16 for
various concentrations of dendrimers (large spherical molecules consisting of branched
polymers that have potential in drug delivery as they can penetrate the cell’s mem-
brane).

In order to determine the radius of gyration, we plot the log of the scattered
intensity versus q2. The reasoning behind this is that the form factor falls off as
P (q) = 1 − q2R2

G/3 + ... ≈ e−q
2R2

G/3. Since I(q) ∼ P (q) when S(q)= 1, we find
that log [I(q)] ∼ q2R2

G/3. The data in Fig. 7.16 demonstrate that the SANS technique
is sensitive enough to observe small changes in the radii of gyration when the concen-
tration of the dendrimers is changed.

The SANS technique is also sensitive enough to observe the difference between a
polymer that does not cross itself, and one that does. By plotting the SANS data in the
relevant high-q range on a log-log scale, we can determine the power n of the high-q
power law P (q) ∼ 1/qn. The data for DNA coils in glycol shown in Fig. 7.17 show
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Figure 2: Guinier plot for SANS data taken from seventh-generation PAMAM dendrimers in 
D2O. The dendrimer fraction is varied.  
 
The range of a Guinier plot corresponds to 3QR g < . This is obtained when the probed 
range (2π/Q) is larger than the particle size.  
 

 
Figure 3: Scattering particles are smaller than the probed range in the Guinier region shown 
for isolated particles and for single polymer coils.  

Guinier region 
Guinier region 

Fig. 7.16 Source: ’The SANS Toolbox’. Guinier plot for SANS data taken from seventh–

generation PAMAM dendrimers in D2O. The dendrimer fraction is varied.

that this molecule represents the equivalent of a self-avoiding random walk, namely a
polymer that does not end up looking like spaghetti.

The data shown thus far- and, in fact, the entire discussion in this section- was
relevant to samples where the scattering does not show any directional dependence.

  
Fig. 7.17 Source: ’The SANS Toolbox’. Porod plot for SANS data taken from 4% (g/g)

DNA coils in d-ethylene glycol at 50oC (above the helix-to-coil transition temperature).
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2. SINGLE NANOCRYSTAL 
 
Anisotropic SANS data from P85 Pluronic micelles sheared in a Couette shear cell are 
included. The characteristic hexagonal peak pattern (six fold symmetry) points to a cubic 
structure formed by the spherical micelles for 25 % mass fraction P85 in D2O solutions. P85 
is a triblock copolymer of poly(propylene) which is hydrophobic in the middle of the 
molecule and poly(ethylene oxide) which is hydrophilic on the outside of the molecule 
(PEO-PPO-PEO). P85 micelles are well formed at ambient temperature. Shearing helps the 
packing of the spherical micelles into a face centered cubic structure (Slawecki et al, 1998).  
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Figure 2: SANS data from 25 % P85 Pluronic (PEO-PPO-PEO triblock copolymer) in D2O 
under Couette shear (5 Hz frequency) at 40 oC. The micelles form a cubic “single crystal” 
structure.  
 
 
3. MULTILAYER VESICLES 
 
Multilayer vesicles are formed by mixing AOT surfactant with a brine/D2O solution. A brine 
solution contains more than 100 g/l sodium chloride salt. Shearing the multilayer vesicles in 
an in-situ Couette shear cell shows orientation along the shearing direction (i.e., 
horizontally). The sheared structure resembles a horizontally elongated “onion skin” 
structure. Two weaker spots along the equatorial axis show weak orientation of the vesicle 
layers parallel to the shearing cell walls as well. This SANS image was obtained with 

Fig. 7.18 Source: ’The SANS Toolbox’, data taken by Slawecki and coworkers. SANS data

on 25% P85 Pluronic (PEO-PPO-PEO triblock copolymer) in D2O under Couette shear (5

Hz frequency) at 40oC. The micelles form a cubic single crystal structure.

However, the SANS technique is by no means restricted to such specimens. One type
of in situ experiment that can be performed on a SANS diffractometer is to apply a
shear to the sample. When doing so, the molecules in the solution can arrange them-
selves into an ordered structure. An example of this effect is shown in Fig. 7.18 where
a collection of Pluronic micelles in a (heavy) water solution are observed to adopt a
cubic structure when subject to shear. Vortex lattices in superconductors and super-
fluids adopt similarly ordered structures.

We conclude this section by showing SANS data on a membrane. This membrane
was oriented at 60o to the neutron beam so that momentum could be transferred both
in the plane of the membrane as well as perpendicular to it. The resulting pattern on
the SANS detector is shown in Fig. 7.19. The reason we included these data in this
booklet is because they look beautiful, and because they reveal the level of detail in
structure that can be observed in a SANS experiment.

7.2 Components and Spectrometer Resolution

The components that make up a SANS spectrometer, and the sample equipment that
is used on such spectrometers is described in detail in the SANS toolbox. In this sec-
tion we give the briefest of summaries of the materials presented in the toolbox.

SANS instruments are (mostly) located at cold sources, and preferable at the end
of a curved neutron guide. The cold source is essential to obtain neutrons of long
wavelengths- required to be able to go down to low momentum transfers- whereas a
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Figure 4: SANS data from oriented DMPC/DMPG membranes containing magainin peptides 
in DMPC bilayers and D2O. The sample was oriented at 60 o to the neutron beam direction in 
order to observe structures both parallel and perpendicular to the membrane surface.  
 
 
5. MAGNETIC MATERIAL 
 
SANS from a single-crystal of NdBa2Cu3O7 (high Tc superconductor) at 100 K is shown. 
This sample is twinned (i.e., is formed of two orthogonally orientated crystals) and the 
nuclear scattering overwhelms the magnetic scattering. Crystal boundaries occur when two 
crystals intergrow with a highly symmetrical interface, often with one crystal being the 
mirror image of the other; atoms are shared by the two crystals at regular intervals. De-
twinning of the crystal is necessary in order to reduce the nuclear scattering thereby 
enhancing the magnetic scattering component. A similar system YBa2Cu3O7 is also 
superconductor (Keimer et al, 1993).  

Fig. 7.19 Source: ’The SANS Toolbox’, data taken by Yang and coworkers. SANS data

from oriented DMPC/DMPG membranes containing magainin peptides in DMPC bilayers

and D2O. The sample was oriented at 60o to the neutron beam direction in order to observe

structures both parallel and perpendicular to the membrane surface.

curved guide is very helpful in eliminating the background of faster neutrons and xrays.
If a curved guide is not present, then one tends to use Be-filters that only transmit
neutrons with wave lengths longer than 4 Å, and one uses filters such as Bi to deal
with the xrays.

In order to select a particular wavelength for the incoming neutrons one uses a
velocity selector or a crystal monochromator. Unless the requirements on the wave
length resolution are very stringent, one normally uses a velocity selector that selects

Fig. 7.20 Source: ’The SANS Toolbox’. Shown is a schematic of the SANS spectrometer at

NIST.
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a wavelength range of about 10% around the average wavelength: ∆λ/λ= 10%. This
is the first component that is shown in Fig. 7.20.

Before the beam of monochromatic neutrons is directed at the sample, special col-
limators are used to shape the beam and reduce its divergence. The collimators are in
fact sets of circular apertures that are housed in an evacuated casing (see Fig. 7.20).
Next, the beam will encounter the sample, followed by another set of circular aper-
tures that define the post-sample collimation. The area detector, which tends to be on
tracks so that the distance to the sample can be varied, is housed in the characteristic
cylindrical tank.

In between the sample and the detector is a moveable beam stop. The function of
this beam stop is to prevent the neutrons that fly through the sample without being
scattered from saturating the detector. When a detector has to deal with too many
counts, it ceases to function properly, since it takes a certain amount of time for the
electronics to be ready to deal with the next counting event. This amount of time is
called the dead-time of the detector and, while it is a very short time, it can nonethe-
less make the detector malfunction when more than (roughly) 50,000 neutrons hit is
every second. This dead time effect is not restricted to SANS detectors, all neutron
detectors suffer from it.

Even with the beam stop properly positioned, the counting rate can be so high
that one actually has to attenuate the incoming beam. SANS spectrometers tend to
have sets of calibrated attenuators that can be rotated into the beam before it strikes
the sample. The area detector itself has many aspects worth considering, such as the
spatial resolution with which it can pinpoint the point of arrival of the neutron when
it hits the detector. All aspects are detailed in the SANS toolbox, but as far as the
occasional user is concerned, the detector is just a means of detecting the neutrons
with roughly 70% efficiency (Fig. 7.21).

The resolution function of a SANS spectrometer describes by how much features
related to the scattering by the sample will be smeared out in q-space. This smearing
out will be determined by the spread of incident wave lengths, by the angular resolu-
tion as determined by the collimators, by the spatial resolution of the detector and by
the sample-to-detector distance, and by the effects of gravity. The combined effects of
these resolution elements on the q-resolution are shown in Fig. 7.22.

The reader might be surprised to see that gravity plays a role in determining the
resolution of the spectrometer, but this aspect can be directly related to the spread
in incoming neutron wave lengths. A neutron that travels 10% slower than another
neutron, will have 10% more time to fall because of the force of gravity. This would
result in a 21% increase in the vertical distance over which it falls. Thus, gravity has
a direct effect on the vertical q-resolution, but not on the horizontal q-resolution. A
neutron with a wave length of 10 Å takes 40 ms to traverse a 16 m separation between
the sample and the detector, during which time it will fall about 0.8 cm. An 11 Å
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Fig. 7.21 Source: ’The SANS Toolbox’. The detector efficiency of the SANS detector of the

NIST SANS spectrometer displays a slight wave length dependence (red curve). However,

given that ∆λ/λ= 10%, the user will not need to be concerned with changes in detection

efficiency.

neutron will fall about 1 cm.

In fact, the effects of gravity are more severe than what was mentioned in the
preceding paragraph. In order for the slower neutrons to actually hit the sample, they
need to make it through the sample aperture and, therefore, they had to be traveling
in a slightly upwards trajectory in the first place, as shown in Fig. 7.23. This trajectory
requirement to cover the pre-sample flight path also affects the vertical q-resolution.
Of course, the slower the average speed of the neutron, the more severe the gravity
induced resolution smearing will be.

The resolution can be improved, if needed, by tightening up the collimation, by
moving the detector to its maximum separation from the sample, by choosing a velocity
selector with a more restrictive transmission window such as ∆λ/λ= 5%, by replacing
the velocity selector with a crystal monochromator, or by performing the experiments
on the international space station. It is important to realize though that in general
we do not have very restrictive resolution requirements. The reason for this is that
we are scattering from individual structures, not from a periodic array of individual
structures. The result is that the static structure factor will look much more like that
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Fig. 7.22 Source: ’The SANS Toolbox’. The overall q-resolution (black line) is determined

by the quadratic sum of the component related to the spread in incoming wave lengths (blue

line), and by the collimation and effects of gravity (red line). This figure is relevant to the

SANS spectrometer located in the cold source guide hall at NIST.

of a liquid than that of a solid: we do not expect any sharp features in q-space and, by
extension, there is no need to investigate these broad features employing a very sharp
resolution function.

7.3 Exercises

The SANS toolbox comes with many exercises, all of which are strongly recommended.
We have borrowed and adapted a few of these problems.

Exercise 7.1

SANS instruments use velocity selector for selecting the incident energy range
rather than monochromators. Not only results this in higher flux, but it has an addi-
tional advantage. What is it?

Exercise 7.2

Normally we use a standard powder (such as Si) on diffractometers to calibrate
the incident neutron wave length. Why can this method not be employed on SANS
instruments?
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Fig. 7.23 Source: ’The SANS Toolbox’. Gravity affects the vertical q-resolution since the

neutrons will have to follow a parabolic trajectory in order to be able to make it through the

aperture. The actual trajectory and its vertical fall distance depend on the wave length of

the neutron. Note that the vertical distances have been greatly exaggerated this this sketch.

Exercise 7.3

The radius of gyration is determined from the low-q behavior of the q= 0 peak.
How would instrumental resolution affect the determination of the value of the radius
of gyrations, if at all?

Exercise 7.4

When doing powder diffraction, we see that the peak shapes at low momentum
transfers become asymmetric (Fig. 6.19). Can we expect similar effects when we use
a 2-dimensional SANS detector?

Exercise 7.5

Describe the set of experiments that are needed to end up with a dataset free from
all instrumental and background effects.

Exercise 7.6

The form factor shown in Fig. 7.11 displays many characteristic q-regions, resulting
from characteristic length scales of the cigar-shaped particles. Explain what aspect(s)
of the cylinders we are probing, and why we are probing these aspects in the various
q-regions. What determines, conceptually speaking, the q-values where we transition
from one region to another, such as the Q1 and Q2 that are shown in the plot?
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Reflectometers

In neutron reflectometery, we graze the surface of a material with a beam of neutrons,
and we look at the ones that are specularly reflected, that is, the ones that appear
to bounce off the surface as if it were a mirror. The intensity of the reflected beam
as a function of grazing angle is determined by the structure of the top layers of the
material; typically we use this technique to learn about these top layers in materials,
such as membranes and semi-conductors.

Neutron reflectometry is still based on the same principles as neutron diffraction;
namely, that the neutrons act as waves when interacting with the material. In fact,
there is a very close connection between neutron reflectometry and similar phenom-
ena in optics. The main difference with neutron scattering experiments described so
far is that we no longer work in the approximation that a neutron is scattered only
once. In fact, we have to focus on the opposite extreme to understand what we mea-
sure in reflectometry; the extreme being that multiple scattering is the norm and we
treat the material as if it is a continuous medium (as opposed to a collection of atoms).

We show a typical reflectometry setup in Fig. 8.1. The angle of incidence of the
neutron is identical to the angle of reflection and, as is clear from this figure, the
neutron transfers momentum in the direction perpendicular to the surface. Therefore,
all we can learn from such experiments is the composition as a function of distance
perpendicular to the surface. In essence, we get one-dimensional information from our
experiments. This restriction makes it difficult to analyze reflectometry data without
ambiguity, the so-called phase problem.

We wish to investigate the layers near the surface of our sample. In general, these
layers will be many atoms thick and, therefore, our probing wavelength should be
large. This in turn implies that our angle of reflection must be small (Fig. 2.3). And
as a consequence, reflectometers tend to be large instruments where a lot of effort has
gone into ensuring that the beam is very narrow and very tightly collimated. We show
the reflectometer at HFIR in Fig. 8.2 before it was located in the cold source guide
hall. And we note that whenever we have to use extreme collimation, we quickly run
out of intensity.

For very small reflection angles, we can find 100% reflectivity. This number quickly
drops off when we increase the amount of momentum q transferred to the sample.
In fact, it drops off as ∼ 1/q4. With neutrons, we can measure reflectivities down to
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Fig. 8.1 A neutron ’hits’ the surface of a material, and either gets reflected (shown), or

transmitted (not shown). When the angle of incidence equals the angle of reflection, we call

this specular reflection. What fraction of the neutrons is being reflected depends on the angle,

the wavelength of the neutrons, and the structure of the material as a function of distance z

from the surface. What we can learn from such experiments is the scattering length density

profile β(z) (to be explained in the next section), shown in red next to the layered sample.

10−5 − 10−7, so roughly 1 neutron out of every million of neutrons that graze the
sample can still be detected as having been reflected. Smaller reflectivities are very
difficult to achieve because the incident neutron beam is intensity limited because of
the requirements on collimation, and when we push our signal to the limit of around 1
neutron per minute we will be measuring more stray neutrons (background neutrons)
than neutrons reflected off of our sample.

Most reflectometers reflect neutrons from a vertical surface, but some can do re-
flection from horizontal surfaces. The latter types are suited to studying the surface
layers of liquids. Reflectometers at reactor sources operate using a constant incident
wave length while varying the angle of the reflected neutrons to probe the reflectivity
profile as a function of momentum transfer. When the angle of the reflected neutrons
is varied, the sample must be rotated at the same time to maintain the specular con-
dition. Reflectometers at pulsed sources have a detector fixed at a specific angle, while
allowing neutrons of many wavelengths to hit the sample; this way we can probe the
sample as a function of momentum transfer while keeping the detector in place and
without having to rotate the sample. Note that varying the incident wavelength is the
only way to probe the surface of liquids.

Pulsed neutron sources can normally compensate for their lack of time integrated
flux by utilizing more detectors simultaneously. For reflectometry this is not an option
since there is only one detector position for which we have that the angle of incidence
with respect of the sample surface equals the angle of reflection. All other events are
referred to as off-specular reflection, and while these events do carry information about
the sample roughness and lateral homogeneity (as in this case momentum is also trans-
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Fig. 8.2 Reflectometers are straightforward instruments that are designed to take data very

close (in angle) to the straight through neutron beam. This is achieved by using very narrow

slits to shape the beam, and by ensuring that the distance between sample and detector is

large. The top panel shows the reflectometer on the beam port floor of the HFIR, the bottom

panel shows the schematic of this instrument. Drawing courtesy of Bill Hamilton (pictured).

ferred parallel to the surface of the sample), this type of information tends to be not as
useful as that contained in specular reflection. In this chapter, will will only deal with
specular reflection except for one figure where we show what off-specular reflection
looks like.

The reflectivity depends on the average scattering length density β(z) (to be de-
fined in the next section), where z is the distance to the surface. Whenever there is a
change in β, we will see a corresponding change in the reflectivity. This is similar to
optics where we see reflection and diffraction at interfaces. It is this that makes reflec-
tometry well suited to locating interfaces when hidden under the surface. But there
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is more. β is the product of the density of the atoms and their scattering lengths.
So it serves as a direct measure of the scattering length, not of the scattering length
squared. This implies that β(z) can be positive or negative. But it also implies that
we can do reflection measurements as a function of the magnetic moment direction of
magnetic ions within the sample. Whenever we change the angle between magnetic
moment and that of the neutron spin, we end up with a different scattering length.
This makes reflectometery a very sensitive technique for studying layered structures
that contain magnetic ions, such as magnetic semiconductors.

As a final word in this section, since reflectometry depends on the scattering length,
it can be used to actually measure the scattering lengths. This is how a large fraction
of the scattering lengths listed in Appendix B have been determined. All details about
reflectivity can be found in the treatise ’Neutron Optics’ by Varley Sears (see our
reference in the introductory chapter).

8.1 The Skinny

In order to model the reflectivity profile (the fraction of neutrons that are reflected as
a function of momentum transferred to the sample), we use the continuum approxi-
mation for the material we are studying. This is an entirely reasonable approximation
since the regions we are probing contain thousands of atoms in the planes perpendic-
ular to the direction of momentum transfer. Therefore, we expect to only be sensitive
to the average neutron scattering power in the layers. The neutron scattering power,
a word we just made up, depends on how many atoms there are in a layer [denoted
by the number density n(~r)], and what their scattering lengths are. This product is
actually referred to as the scattering length density (see also the SANS terminology
in Chapter 7) and it is defined for atoms in a region near ~r by

β(~r) = 4πn(~r)bcoh(~r).

When we probe a material in a reflectivity experiment, we (indirectly) measure the
structure of the material as a function of z, the distance to the surface. This implies
that we will only be sensitive to the scattering length density β(z), which is obtained
from β(~r) by averaging over the perpendicular directions. The aim of a reflectivity
experiment is to determine β(z).

In order to predict what the reflectivity of a material will be we have to solve the
Schrödinger equation where the scattering length density will play the role of poten-
tial: V (z) = h̄2β(z)/2mneutron. We do this for some cases in the exercises at the end of
this chapter, but in here we simply will take our cue from optics, and from waving our
hands. We can get away with this based on the one-to-one correspondence between
the Maxwell equations that govern all optical properties, and the one-dimensional
Schrödinger equation. This correspondence can be expressed by introducing a refrac-
tive index n for the neutron:

n =
√

(E − V )/E, (8.1)

with E the kinetic energy of the incident neutron. Since the potential V can be positive
or negative, we can have an index of reflection that is smaller or larger than 1. This
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for instance implies that a neutron can speed up when it enters a material.

Bearing this correspondence in mind, we look at three general examples: an inter-
face, a single layer on a substrate, and a multi-layer assembly on a substrate. To under-
stand these examples better, we take another look at Fig. 8.1. Outside of the material,
the neutron has a certain energy E [with E = h̄2k2

0/2m = h̄2/2m(k2
0,x + k2

0,y + k2
0,z)].

For the purpose of understanding reflectivity, we are only interested in the amount of
energy associated with the neutron’s velocity in the z-direction, perpendicular to the
surface of the sample. The other components will not be affected during the reflectivity
process, so we will ignore them.

Outside of the material, the component of the neutron’s wave vector in the z-
direction k0,z is given by k0,z = k0 sin θin, and Ez = h̄2k2

0,z/2m. The neutron’s wave-
length associated with this q(z) is λ(z) = 2π/q(z). When the neutron enters the
material, its available energy will change to Ez − V (z); thereby either shortening or
elongating its wave length according to

λ(z)2 =
h2(Ez − V (z))

2m
; q(z) =

2π

λ(z)
. (8.2)

This is shown in Fig. 8.3

When we solve the reflectivity problem mathematically by finding a solution to
Schrödinger’s equation, what we do graphically is to make sure that the wave length
of the neutron matches the wave length given by the available energy

Ez − V (z) =
h̄2

2m
[q2(z)− β(z)]. (8.3)

We do this matching in every region, and we make sure that the waves link up
smoothly between the different regions. With smoothly we mean that both the waves
and their slopes match at the interface where they link up. This is physics’ speak for
saying that the second derivative can be discontinuous, implying that we have a step
function in the available energy.

So let’s focus our attention on an interface, such as the one shown in Fig. 8.4. If
the interface represents a ’step up’ in β(z), which would be the case for a material
with a positive scattering length density, then we can expect 100% of the neutrons
to be reflected for very small incident angles. At the air-material interface we have
qair(z) ≡ q0 = k0 sin θin; this implies that we can end up with a situation where
q2
0 − β(z) is smaller than zero (eqn 8.3), in turn implying that neutron waves such

as the ones shown in Fig. 8.3 cannot exist in the material (eqn 8.2). The only option
neutrons have in that case is to stay out of the material, also known as reflecting off
of the surface of it. We can compare this to a ball having a certain amount of kinetic
energy, but not enough to roll up a hill. As a result, the ball will roll back down.
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Fig. 8.3 The probing wavelength of the neutron in the material is determined by the kinetic

energy of the neutron, the angle of incidence, and by the scattering length density β(z)

according to eqn 8.2. The probing wavelength in the different types of material that make

up the sample is sketched at the top of the figure. Solving the 1-dimensional Schrödinger

equation involves making sure that the wave function in the various regions links up with

the neighboring regions in a smooth fashion: the wave function has to be continuous, and its

derivative has to be continuous. This is sketched for the wave that is drawn here.

We will find that 100% of the neutrons will be reflected off of the material provided
that q2

0 − β(z) < 0, or up to a critical angle of incidence θc given by

k0 sin θc =
√
β(z). (8.4)

Critical angles are typically very small, but note that they are dependent on the wave
length of the neutron: the longer the wavelength, the larger the critical angle. This
fact is used in neutron guide tubes, where slow (long wave length) neutrons are redi-
rected over a few degrees, so they can be separated from faster neutrons (which will be
transmitted into the material of the guide tube) that would cause a lot of background
problems in scattering experiments. For this reason, cold neutron sources have their
instruments at the end of guide tubes. Using these optical-like properties of the neu-
tron is a field by itself, referred to as ’neutron-optics’ (and written up by Varley Sears).

When the scattering length density of the material is negative, then we will never
get total reflection. This follows rightaway from our previous statements since q2

0−β(z)
will always be larger than zero. In the general case, as soon as q2

0 − β(z) > 0, then
we will have that a large fraction of the neutrons will not be reflected. How many are
reflected- the so-called reflectivity R- can be calculated (Exercise 8.1) to be:

R = |
q0 − q1

q0 + q1
|2, (8.5)
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Fig. 8.4 An interface between two materials- such as air and a material with a positive

scattering length shown here- is marked by a sudden change in scattering length density

(top panel). For small angles of incidence we see that all neutrons are reflected, while the

reflectivity rapidly drops as the angle of incidence is increased beyond the critical angle and

most neutrons will be transmitted. In this figure ~k0 stands for the incident neutron, ~kR for

the reflected neutron, and ~kT for the transmitted neutron. The graph on the lower right

shows- on a log scale- the expected reflectivity (fraction of the neutrons being reflected under

specular conditions) for the scattering length density shown in the lower left panel. Note that

we have used the symbols k to indicate the full momentum vector of the neutron, not to be

confused with q. Bottom drawings courtesy of Bill Hamilton.

where q0 = k0 sin θ as defined previously, and q1 is defined within the material through
q2
1 = q2

0 −β(z). So we use q(z) to specify the general case, and q0, q1, q2 etc. to denote
the case within specific layers of the material. This definition ensures that q1 gives us
the neutron wavelength within the material: λ(z) = 2π/q(z) = 2π/q1 (eqn 8.2). The
solution of eqn 8.5 is shown in Fig. 8.4. Also, from eqn 8.5 we can see that for large
momentum transfers [q2

0 � β(z); q0 ≈ q1] that the reflectivity falls off as ∼ 1/q4
0 (see

inset Fig. 8.4):

R = [
q0 − q1

q0 + q1
]2[
q0 + q1

q0 + q1
]2 = [

(q2
0 − q2

1)

(q0 + q1)2
]2 =

β(z)2

16q4
0

. (8.6)

The curve shown in Fig. 8.4 makes sense. We have a range of incident grazing an-
gles that see all neutrons reflected, followed by an increased transmission coefficient.
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Fig. 8.5 A single layer on top of a substrate provides two changes (interfaces) in the scatter-

ing length density profile. In order to mathematically solve this, we have to take into account

neutrons that are traveling up and down in every layer, and ensure that the wave function

of the neutron (and its derivative) is continuous at each interface. The result is that we see

the same reflectivity profile as we have for a single interface, but now on top of it we find

interference fringes whose period is given by the reciprocal of the thickness of the single layer,

as shown in the panel on the lower right. Bottom drawings courtesy of Bill Hamilton.

Anyone who has ever looked at light reflected from a glass pane will not be surprised
by this curve. We now take it one step further, the case where we have a layer on top
of a substrate as shown in Fig. 8.5.

When we put a layer on top of the substrate, we can still expect the same behavior
we already discussed for the interface: total reflection for small angles and a drop-off
in reflectivity proportional to 1/q4

0 for large momentum transfers. But, we will also see
the effects of this layer. We now have the equivalent situation of a thin film in optics,
such as a soap bubble in air or a layer of oil floating on water. When we look at these
thin films we see various colors being reflected; the colors that we see are determined
by the thickness of the film. Conversely, we can calculate the thickness of the film by
just looking at the colors, provided we know the refractive index of the film (that is,
what is the film made of).

What if we neither know what the film is made of, nor how thick it is. Can we still
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Fig. 8.6 In case of multi-layers on top of a substrate we can still distinguish the reflectivity

profile of the substrate, but now we also see oscillations with the period determined by the

overall width of the multi-layer assembly, as well as the onset of a Bragg peak at qr = 2π/a

determined by the distance between adjacent multi-layers. Bottom drawings courtesy of Bill

Hamilton.

look at the colors that are reflected to determine the film’s thickness and make-up?
Using neutron reflectometery we can. The thickness of the film (layer) will create os-
cillations in the reflectivity profile while the make-up of the film (layer) will determine
the amplitude of the oscillations, the equivalent of the brightness of the colors. The
period of the oscillations is given by ∆qR = 2π/T , with T the thickness of the film.
This is shown in Fig. 8.5. These oscillations will be superimposed on top of the reflec-
tivity profile of the substrate (shown in Fig. 8.4).

The substrate plays an important role in how visible the oscillations are. When we
do the math, we find that the peaks of the oscillations follow an intensity envelop given
by β2

1/16q4
0 while the troughs follow (β1−β2/2)2/16q4

0 . Thus, when β1 = β2/2 we can
expect some very pronounced oscillations. This is very helpful when convincing the
referee of the trustworthiness of one’s data. Conversely, when β2=0, an unsupported
interface, then the oscillations will not be very pronounced.

The next step up in complexity would be a multi-layer assembly on top of a sub-
strate. We now have two characteristic length scales, namely the overall thickness T
of the multi-layer, and the spacings a between the individual layers that make up the
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multi-layer. A typical reflectivity profile is shown in Fig. 8.6. We can see that the
separation between the layers shows up as increased reflectivity at qR = 2π/a. These
spots of increased reflectivity are sometimes referred to as Bragg peaks. While this
nomenclature is not entirely correct, it makes sense as we expect this peak to become
increasingly more pronounced when we increase the number of layers. This is entirely
equivalent to what happens in liquids and solids: the more ordering (structure) there
is, the sharper the features in the resulting interference pattern.

The make-up of the individual layers will be reflected in the amplitude of the os-
cillations, but this information is now hidden a bit deeper in the reflectivity profile.
This is where reflectivity profiles become more and more difficult to interpret. The
reason for this can be seen in Fig. 8.6. In order to be able to follow the amplitude of
these oscillations, we need to be able to measure very small reflectivities R, preferably
down to (and beyond) 1 neutron in a million (R= 10−6). Here we quickly run into
experimental limitations caused by background scattering. The best we can do is to
come up with a model of how the scattering length density varies across the layers,
and fit this to the data. Sometimes we find that we cannot distinguish between similar
models because we do not have reflectivity data down to small enough reflectivities,
or because our surfaces and interfaces are not smooth enough. These are the intrinsic
limitations of the reflectivity technique.

Fig. 8.7 Neutron reflectivity reveals, through modeling, the make-up and thickness of a

multi-layered structure. Note the difference in level of sensitivity between neutron and xray

curves. The neutron data has been offset by a decade. The layered model shown in the

inset yields the solid curve drawn through the neutron scattering data. This figure has been

reproduced with permission from Macmillan Publishers Ltd: Polymer Journal (M. Torikai et

al., Polymer Journal 39, 1238 (2007)), copyright 2007.
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Fig. 8.8 Figure reprinted from I. Burgess et al., Biophysical Journal 86, 1763-1776, copyright

2004, with permission from Elsevier. The curve labeled (1) shows the reflectivity profile for

a gold coated block of quartz. The contrast was optimized by performing the reflectivity

experiments when the surface was immersed in D2O. The curve labeled (2) shows the result

when the gold surface is covered by a bilayer of the 7:3 mixture of h-DMPC and cholesterol.

The inset shows the same results, but now the reflectivity curves have been multiplied by

q4z so that the oscillations become better visible. The solid lines show the fitted reflectivity

curves.

Before we discuss the components of the reflectometer, we show some examples of
the types of experiments that have been performed and what has been learned about
the materials that were being studied. We show an example of the reflectivity profile
of a multi-layered sample in Fig. 8.7. The agreement between the data and the calcu-
lated reflectivity profile based on the model is very good. In practice, to obtain these
models one changes the scattering length density over a small range of z values; if this
change improves the agreement between the model and the data, then this change is
effectuated. If not, another change is tried out. This process is repeated until the fit
is as good as the data allows.

Reflectivity experiments are well suited to probing the structure of membranes,
making this technique (potentially) very useful for studying biological samples. An ex-
ample of this is shown in Fig. 8.8 where we can observe the change in reflectivity when
a mixture of h-DPMC and cholesterol is deposited on a gold surface. The purpose of
this experiment was to study the influence of a substrate charge on the structure and
hydration of a bilayer lipid membrane.

We have largely ignored off-specular reflection, that is, reflection events where
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Fig. 8.9 Figure reproduced from the PSI website (www.psi.ch). Shown is a contour plot

of the reflectivity by a Ni/Ti multilayer. Specular reflection correspond to the vertical line

located at ω=0. All scattering not on this line (off-specular) is caused by the roughness of

interfaces and inhomogeneities in planes parallel to the surface. Reflectivity points out these

’defects’ without mercy.

the neutrons also transfer momentum in the lateral direction. Off-specular reflection
happens when either the surface in not exactly perpendicular to the nominal direc-
tion of momentum transfer (when we have interface roughness), or when we have a
non-uniform make-up of the sample in the planes perpendicular to the z-direction.
Therefore, off-specular reflection tells us about surface roughness, or about these lat-
eral variations. As an example we show the full reflectivity profile (specular and off-
specular) of a less than perfectly smooth multilayered sample in Fig. 8.9. As can be
seen in this figure, interface roughness gives rise to significant (and measurable) off-
specular intensity in this Ni/Ti multilayer assembly. Currently, we do not exactly know
how to translate the presence of off-specular reflectivity into quantitative statements
about our sample, we can only draw qualitative conclusions.

8.2 Components

Reflectometers are straightforward instruments. What is needed, at a reactor source, is
a monochromator to select the incident wavelength of the neutrons, a whole bunch of
very narrow slits to shape the beam into a very narrow one that can be used to deliver
the neutrons onto the sample under grazing angles, a detector, and a means of moving
the detector around while rotating the sample. We show the MURR reflectometer in
Fig. 8.10.

For a monochromator on a reflectometer, we like to use one with high reflectivity
because we would like to have as many neutrons as possible. Monochromators do not
have to be horizontally focusing since we will narrow down our beam considerably,
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Fig. 8.10 The MURR reflectometer uses a graphite monochromator and slits to deliver a

monochromatic beam of neutrons onto a sample that is located at the center of this photo. The

detector housing is located on the left side of the photo. The two optical benches (aluminum

rails on either side of the sample) are used to position the polarizing mirrors (not shown)

and/or additional slits and shielding.

and we are mostly interested in getting a beam with very little angular divergence.
As such, a flat graphite monochromator is a natural choice, or a monochromator with
slight vertical focussing such as the one shown in Fig. 8.11 that is in use at the MURR
reflectometer. There is not much more to be said about the monochromator.

We use very narrow slits to obtain a highly collimated and narrow beam. Typical
beam widths at the sample position are of the order of 1 mm wide. A set of slits after
the monochromator and another set of slits before the sample position shape this nar-
row beam, and also cut down on the straight through beam which would interfere with
our ability to measure the reflectivity at very small angles. After the sample position
we use additional slits, all with the aim of cutting down on background scattering
and maintaining our angular resolution so that we know the scattering angle to high
accuracy.

Aligning a reflectometer so that the sample is at just the right position, and so that
we know exactly where the beam hits the sample and what the scattering angle is, is
a time-consuming process. We detail the alignment procedure in Appendix G. Once
the spectrometer is aligned, the measurements are straightforward. We have neutrons
hit the sample, and we measure the reflectivity profile by rotating the sample over an
angle θin and the detector over an angle 2θin (with neutron deflection angle θ equal to
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Fig. 8.11 The monochromator of a reflectometer is flat or vertically focussing, such as the

black looking stack of four graphite crystals shown here. The monochromator is oriented with

the aid of several motors shown in this photo.

2θin) so that the condition for specular reflection, θin=θout (Fig. 8.1) is always met.

In order to get down to very low reflectivities (R < 10−5) we must do accurate
background measurements. A typical experiment can consist of measuring the reflec-
tivity of the sample, and repeating this scan without anything on the sample table
(to get an idea of the sample independent background caused by the straight through
beam and low flying neutrons from elsewhere). If we are interested in layers on a
substrate, it should come as no surprise that we will measure the reflectivity of the
substrate without layers on it under identical conditions to aid us with the data anal-
ysis, in particular with the background correction.

Reducing the number of background counts is essential to our ability to get down
to very low reflectivities. For instance, take the case where the background level is 1
neutron per second. Assuming that only 1 neutron in 1 million is reflected (that is,
we are interested in R=10−6), and we have 1 million neutrons per second incident on
the sample after we have narrowed down the beam with our slits, then the signal from
our sample and that of the background are of the same order of magnitude, and we
are close to reaching the limits of what we can measure on our instrument. Should our
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background be 10 counts per second rather than 1 count per second, then we will lose
one order in reflectivity sensitivity, which can be detrimental to our ability of measur-
ing the scattering length density profile of our sample. In most cases, the background
originates in neutrons being scattered by the sample holder and by other bits of the
spectrometer. The only way of eliminating unwanted background is to improve the
shielding, a process that normally is done by trial and error.

When we do polarized reflectivity measurements, we also keep track of whether
the neutron’s intrinsic spin is aligned parallel or anti-parallel to the magnetic field
the sample is exposed to, and we keep track of whether the neutron changed its spin
orientation in the reflection process, or not. In order to be able to accomplish this,
we use polarizing mirrors. A polarizing mirror reflects a neutron of one spin orienta-
tion, but transmits neutrons that have the other spin orientation. Thus, we can use
these mirrors to polarize the neutron beam: the reflected (off the mirror) beam will
only contain neutrons that all have the identical orientation of their intrinsic spin. We
place one mirror between the monochromator and the sample to create the polarized
beam, and one mirror between the sample and the detector to ensure that we only
detect neutrons of one particular spin orientation. Note that we could also reflect out
the unwanted spin orientation, and instead use the transmitted beam for doing our
experiment.

The setup of a reflectometer with polarizing mirrors is more complicated, because
we now have to deal with additional deflection angles at the polarizing mirrors, or
we have to deal with transmitted beams that come with more background attached
caused by the scattering of the mirror holder. In addition, we have to set up guide
fields in order to maintain the neutron’s spin orientation. However, this setup process
is manageable and it is much better figured out how to do this setup while actually
standing at the instrument than to read about it in this paragraph.

There is one additional piece of equipment that comes with the usage of polarizing
mirrors, and that is a device called a spin-flipper. This device is aptly named as it does
exactly that, it flips the spin orientation of the neutron by 180 degrees. At least, that
is the ideal situation. In practice, the device is not perfect and not all of the neutrons
get flipped. The effectiveness of the device is denoted by its flipping ratio, which is the
ratio of the number of successful flips over the number of failed flips. A flipping ratio
of 30 is fabulous, a flipping ratio below 5 is impossible to work with. Optimizing the
flipping ratio is time well spent as the signal of interest in an experiment will be based
on the difference between two measurements. Insufficient control over the orientation
of the neutron spin will significantly affect this difference. We show an example of a
polarized experiment in Fig. 8.12.

The final piece of advice in this chapter deals with the footprint correction. In our
preceding discussion, we swept one item under the rug that interferes with the data
analysis of reflectivity experiments at reactor sources. When we move our detector to
a different scattering angle, we must also rotate our sample to ensure that the condi-
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Fig. 8.12 Figure reproduced with permission from R. Stephan et al., Journal of Magnetism

and Magnetic Materials 320, 3378 (2008). The difference in reflection between spin-up and

spin-down polarized neutrons when reflected off of a magnetized Fe-layer deposited on a Si

substrate yields information about the size of the overall iron magnetic moment as a function

of substrate and deposition technique.

tion of specular reflection is maintained. This changes the area of the sample that is
illuminated by the very narrow neutron beam. This area is referred to as the footprint
of the beam, and we need to correct for it so that we get a reflectivity curve that is
based on a fixed number of incident neutrons per surface area of the sample.

The surface area over which the neutron beam is spread out is proportional to
1/sin(θin), which in turn will be proportional to 1/q0,z. By simply putting this factor
back into the reflectivity profile we correct for the changing footprint of the beam. At
least, almost. For very small angles of reflection we can have that the beam is wider
than the sample, so we have to put in the appropriate cut-off in our correction. For
very narrow beams we do not have to worry about this. In fact, for wide beams that
go from being wider than the sample to smaller than the sample, we actually have
to take into account how the beam falls off in intensity away from the center of the
beam. Such footprint corrections tend to involve the error function.

The bottom line is that footprint corrections will have to be carried out before
one can observe the flat bit of the reflectivity curve corresponding to total reflection.
Once this flat bit has been identified, one takes this level to normalize the reflectivity
profile: R= 1.
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8.3 Exercises

Exercise 8.1

The reflectivity R for a single air-solid interface is given by

R = |
q0 − q1

q0 + q1
|2,

with q0 the component of the neutron’s q-vector perpendicular to the surface of the
interface, while q1 is given by q2

1 = q2
0 − β.

a) In order to calculate the reflectivity, we have to solve the Schrödinger equation
in the direction perpendicular to the surface. We do this by writing down the general
solution in air and in the solid, followed by a matching of the wave function and its
derivative at the interface. Why do we do this matching? And, why only for the wave
function and its derivative, and not for the second derivative?

b) Derive the above equation by finding the solution to the one-dimensional Schrödinger
equation. Use Ψ(z) = α0e

−iq0z +β0e
iq0z as the general solution for the neutron in air,

and Ψ(z) = α1e
−iq1z as the general solution in the solid. The reflectivity is given by

R = |β0/α0|2. Also, why is there no term ∼ β1e
iq1z?

c) Show that the above equation yields a reflectivity R= 1 for q2
0 − β < 0.

Exercise 8.2

a) Show that the reflectivity R of a single layer on top of a substrate (Fig. 8.5) is
given by

R =

∣∣∣∣∣ [1− q0
q2

] + i[ q0q1 −
q1
q2

]tan(q1T )

[−1− q0
q2

] + i[ q0q1 + q1
q2

]tan(q1T )

∣∣∣∣∣
2

.

In this equation, T is the thickness of the layer and the label ’0’ refers to air, the label
’1’ to the layer, and the label ’2’ to the substrate.

b) Show that in the high q-limit the reflectivity oscillates between R = β2
1/16q4

0

and R = (β1 − β2/2)2/16q4
0 .

Exercise 8.3

Take a look at the membrane shown in Fig. 4.13. Discuss whether this membrane
can be studied successfully using neutron reflectometry. What can we learn (if any-
thing much)? What would be some of the problems that we might encounter?

Exercise 8.4
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For this exercise we make use of the applet that can be found on
http://rkt.chem.ox.ac.uk/techniques/nrmain.html. This applet illustrates the princi-
ple of contrast matching (this exercise), and that of the ’phase problem’ (next exercise).
Open the neutron reflectivity applet, which is the third applet on the webpage.

Fig. 8.13 Screen shots from the applet in this exercise. (a) The total reflectivity due to

the air-D2O interface. (b) When the air and the substrate are matched in scattering length

density, we get very little overall reflectivity. However, this makes the profile sensitive to what

happens in the layer, as can be seen by the minimum in reflectivity given by the thickness of

the layer. (c) The position of the minimum in reflectivity occurs at half the q-value shown in

panel (b) when we choose a suitable scattering length density of the substrate. (d) Changing

air to silicon changes the scattering length density of the layer for which we find a minimum on

the reflectivity profile, however, the position of the minimum is determined by the thickness

of the layer.

Play around with the applet, and try the exercises that are written up on this web
page, points (i) through (v). Note that what we refer to as β, the scattering length
density, is referred to as ρ in this applet. Make sure you verify the following:

• When the scattering length density of the air and the substrate match (called non
reflecting water NRW on this web page), then all reflectivity originates from the
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thin layer. Play around with the thickness of the layer and its scattering length
density. For a layer thickness T of 40Å, does the minimum in the reflectivity curve
occur at π/T , or at 2π/T? (Fig. 8.13b).

• When we change the substrate to D2O for a given layer thickness, we see that
the minimum in reflectivity shifts to half its original q-value (Fig. 8.13c). Why is
this?

• Verify that the minimum is most pronounced when β1 = β2/2 (Fig. 8.13c).

• When we change the substrate to silicon (Fig. 8.13d), notice that the position
of the minimum does not change. Also notice that the minimum in reflectivity
now occurs for a scattering length density of the layer given by β1 − βsilicon =
(β2 − βsilicon)/2. Why is this?

Exercise 8.5

In this exercise we will use the applet referred to in the previous exercise. In the
main text we mentioned that it is not possible to take the reflectivity profile, and
determine without ambiguity the make up of the layered structure. For this reason, we
normally come up with a model of the structure, and calculate the reflectivity profile
of this model and compare it to the data. However, we cannot be sure that we always
end up with the right model. This is referred to as the phase problem, and it is easy
to demonstrate with the applet.

Fig. 8.14 Screen shots from the applet in this exercise. We can obtain identical reflectivity

curves for two different values [β1= 2.02 in panel (a) and β1= 4.36 in panel (b)] of the

scattering length density of the thin layer.

Set the substrate to D2O, and pick a layer thickness of 40 Å. This setup will have
a minimum in reflectivity at q = π/40Å = 0.08Å−1 for β1 = β2/2= 3.18. Play around
with the scattering length density of the layer. For instance, set β1 at 2.02 and 4.36
(Fig. 8.14) and notice that the reflectivity profile is identical. What we are seeing here
is, simply put, that (β1±∆β−β2/2)2 does not depend on the ±-sign when β1 = β2/2.
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This is the ’phase problem’ and it originates from the fact that we have to take the
square of the scattering length densities at one point. Why does this hold true for the
entire reflectivity curve, not just for the minimum in reflectivity?

Exercise 8.6

We can use the phenomenon of total reflectivity to transport neutrons over large
distances in neutron guide tubes. As long as the angle of incidence of the neutron is
small enough, we will get total reflection and we will be able to move neutrons away
from the reactor into a guide hall. Very good neutron guide tubes consist of smooth
surfaces (glass) with coatings that contain 58Ni.

Fig. 8.15 A neutron guide tube at the ILL reactor (www.ill.eu). Notice that, unlike a glass

fiber, the tube is almost straight.

a) The curvature of a guide tube is very small (Fig. 8.15), that is, guide tubes look
almost like straight tubes. Why is this?

b) Neutron guide tubes are used to direct slow neutrons onto a sample, while faster
neutrons (and gamma radiation from the reactor) do not make it down the guide tube.
Why do faster neutrons not make it?

c) Some guide tubes use nickel coatings, whereas very good and expensive guide
tubes use the isotope 58Ni. What is so special about this isotope, other than that it is
expensive?

Exercise 8.7

If we want to lock up a neutron in a tiny box made of smooth walled aluminum (so
that we can study the lifetime of a neutron), what is the maximum speed a neutron
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can have so that it cannot escape? Aluminum has a (face centered) cubic structure
with unit cell length a=4.04 Å, and it has 4 atoms per unit cell.

Exercise 8.8

When we model the reflectivity profile, we change the scattering length density
in a layer of thickness ∆z in our model. Based on your knowledge of Fourier trans-
forms, what is the minimum thickness for ∆z that we can model and why can we not
(in principle) adjust the scattering length density in a layer that is only one atom thick?

Exercise 8.9

In reflectivity experiments on membranes, one sometimes uses a bunch of mem-
branes stacked on top of each other, with the entire sandwich placed on a substrate.
Compare this method to doing reflectivity measurements on a single membrane placed
on a substrate. What are the advantages and disadvantages?



9

Triple-Axis Spectrometers

The triple-axis spectrometer was invented by Bertram Brockhouse at Chalk River,
Canada. For this, he was awarded the Nobel prize in 1995.

The triple-axis, or 3-axis spectrometer, allows the user to measure inelastic scat-
tering events at constant momentum transfer. It derives its name from the three axes
of rotation (indicated in Fig. 9.2) that can be used during the experiment. The ad-
vantage of a 3-axis spectrometer over a time-of-flight machine is that it is very flexible
in setup because every angle can be varied, and allows for easy adjustment of sample
parameters, such as tilt angles.

One of the disadvantages that the 3-axis spectrometer has over a time-of-flight
instrument is that the background can vary because of varying degrees of shielding
when the arms of the spectrometer are moved during the course of the experiment.
Also, in general, the 3-axis spectrometer has only one detector. This is both an ad-
vantage and disadvantage. On the one hand, the resolution can easily be fine-tuned to
the desired accuracy. On the other hand, the count rate can be low. As such, inelastic
time-of-flight machines and triple-axis spectrometers are often complementary to each
other: low dimensional magnets are best measured on a time-of-flight spectrometer,

Fig. 9.1 Bertram Brockhouse at the first 3-axis spectrometer at the E3 beam line at Chalk

River Laboratories. The beam line is still operational. Since Brockhouse lived long enough to

pick up his Nobel prize, we can safely assume that the beam line shutter was closed during

this photo-op.
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Fig. 9.2 A schematic representation of a 3-axis spectrometer. The monochromator crystal

is placed on the first axis, the sample on the second axis, and the analyzer crystal on the

third axis. The path of the neutron that is being detected is indicated by the purple line.

three dimensional systems are still best studied on a triple-axis, in most cases.

Actual 3-axis spectrometers are large instruments, as shown in Fig. 9.3. Their size
reflects a number of practical considerations. First, neutrons easily penetrate materials
and, therefore, one requires a considerable amount of material in order to shield the
surroundings from unwanted neutrons and exposure to radiation. After all, neutrons
are produced by drilling a hole in the side of a nuclear reactor. Second, the instru-
ments have to be large enough so that they can house large cryostats, pressure cells,
and other pieces of sample environments. Third, the neutron beams themselves tend
to be fairly large, of the order of 2x4 inches. This is the only way that one can achieve
a flux of neutrons that is large enough to complete a scattering experiment within a
reasonable time frame.

We first discuss the very basics of how a 3-axis spectrometer does its job, only then
will we have a detailed look at the components of the spectrometer.

9.1 The Skinny

In an inelastic scattering experiment, the neutron confers a certain amount of momen-
tum, and a certain amount of energy to the sample. The spectrometer will be set for a
certain amount of momentum and energy transfer, and then one measures what frac-
tion of the neutrons that hit the sample will be scattered by the sample. This fraction
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is (roughly) proportional to the quantity that one is after in such experiments, namely,
the dynamic structure factor S(~q,E) (with h̄~q the amount of momentum transferred
to the sample and with E = h̄ω = hν the amount of energy transferred).

The 3-axis spectrometer utilizes two crystals to keep track of momentum and energy
transfer. The first crystal that the neutron beam encounters is called the monochroma-
tor crystal, or monochromator for short. Neutrons with a rainbow of energies impinge
upon this crystal, but only those neutrons that satisfy the Bragg condition for reflec-
tion are reflected out of the beam onto the sample. The remainder of the neutrons are
discarded.

The above selection procedure fixes the energy of the neutrons that are sent on to-
wards the sample. This is because the energy of the neutron is given by the wave length
of the neutron, and the selected wavelength of the neutron is such that its probing
wavelength matches the lattice spacing of the monochromator crystal. This selection
procedure does more: it also fixes the momentum of the neutron. The magnitude of the
momentum vector is determined by the energy (wave length) of the neutron, and the
direction of the neutron’s momentum vector points from the monochromator crystal
to the sample.

The neutrons that make it to the sample are either scattered by it, or they continue
through the sample and will be discarded. Of the neutrons that are being scattered by
the sample, a (small) fraction of them will be scattered in the direction of the waiting
analyzer crystal. This is the main difference between a 3-axis experiment and an elas-
tic scattering experiment where the neutrons will be allowed to make it directly to a
detector; in an inelastic experiment, the neutrons have to undergo one more selection

Fig. 9.3 Two examples of 3-axis spectrometers. The one on the left is the TRIAX spectrom-

eter at the Missouri Research Reactor, the one on the right is HB3 at Oak Ridge National

Laboratory. The strapping lad shown in the left photo demonstrates that these spectrome-

ters are in fact quite large, and that things rapidly get quite messy when doing an actual

experiment. The HB3 spectrometer is the brightest 3-axis spectrometer in North America,

TRIAX is down in brightness by a factor of about 5 compared to HB3.
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procedure. During this final selection procedure, only those neutrons that have a cer-
tain energy will be Bragg reflected by the analyzer crystal (analyzer for short) in the
direction of a detector; all other neutrons are discarded.

The final selection step ensures that only neutrons with the desired final energy
make it to the detector to be counted. With the final energy Efinal of the scattered
neutron known, and combining this with the known initial (incident) energy Einitial

of the neutron, we can now easily calculate the energy transferred from the neutron
to the sample as E = Einitial − Efinal. Moreover, we also know the final momentum
vector h̄~kfinal of the neutron. The direction of this vector points from the sample to
the analyzer, and its magnitude can be inferred from the final energy (wavelength)

of the neutron. Again, combining this with the initial momentum vector h̄~kinitial that
was fixed by the monochromator, we calculate the amount of momentum transferred
from the neutron to the sample as h̄~q = h̄~kinitial − h̄~kfinal.

While we may feel sorry for all the discarded neutrons, they do serve a purpose.
The measurement consists of tabulating what fraction of the neutrons are actually
scattered by the sample while transferring a precise amount of momentum and energy
to the sample. If the conditions are just right- for instance, when the amount of en-
ergy and momentum transferred are just what is needed to get a sound wave going in
the sample- then we will observe that a significant fraction of the neutrons are being
scattered. If the conditions are slightly off- for instance, the amount of momentum
transferred would be good for creating a sound wave, but the energy transferred is
slightly too little or too much- then we will observe that barely any neutrons are scat-
tered.

During the course of an experiment we can probe the scattering power of the sam-
ple while a given amount of momentum and energy is being transferred to it. In this
way, we will hit the ’sweet spot’ that would correspond to a particular excitation. An
example of such an excitation is displayed in Fig. 9.4 where we show the scattering
power of liquid helium at a particular momentum transfer, while varying how much
energy the liquid receives from the neutron. As can be seen in this figure, when the
amount of energy transferred is just right, the liquid says, thank you, and an excitation
is created. This way we learn about the possible excitations in our sample.

Experiments like these can even be repeated at different momentum transfers. In
this way, one can map out the momentum dependence of a certain excitation. An ex-
ample of this, again for liquid helium, is shown in Fig. 9.5. This figure is an intensity
map where a larger fraction of the neutrons being scattered is indicated by a darker
color. Many details are visible in this figure. One observes that the energy at which
the excitation shown in Fig. 9.4 occurs depends strongly on the amount of momentum
transferred. This dependence is referred to as the dispersion curve. Thus, the disper-
sion curve E(q) is given by how much energy E is required to create an excitation
while transferring a certain amount of momentum h̄q. For this particular example of
a liquid, only the magnitude of the momentum transferred is important since a liquid
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Fig. 9.4 Shown is the dynamic structure factor S(q, E = hν) of liquid 4He for q = 2.0

Å−1 at constant density ρ= 0.1715 g/cm3. The experiments have been repeated at various

temperatures so that one can observe the changes that take place in this liquid when the

temperature is raised from the superfluid to the normal fluid phase. At the lowest temperature

(top left) one can see that neutrons that transfer just the right amount of energy (ν= 0.16

THz) are very successful in creating an excitation in the liquid; a large fraction of the neutrons

are being scattered. In contrast, a much smaller fraction of the neutrons are scattered when

they transfer a different amount of energy. This results in a well-defined excitation peak.

Note, however, (inset) that there are some details visible in the scattering at higher energy

transfer; one needs a magnifying glass to see these, but they also represent some excitations in

the liquid. For the record, one can also see that the excitation becomes less well characterized

(blurry) when the temperature is increased. This reflects an intrinsic property of the liquid

that can be studied using neutron scattering techniques.

is isotropic (it looks the same from all directions). This would not be the case for
solids, or molecules with a directional dependence. In these cases, the dispersion curve
depends also on the direction of the momentum transferred: E(~q).

Before we delve into the details of the components of a 3-axis spectrometer, we
show two more examples of excitations that have been studied on 3-axis spectrome-
ters world wide. In Fig. 9.6, we show a high-energy magnetic excitation in the mineral
magnetite. This is the mineral that has given magnetism its name, yet not all of the
microscopic behavior and arrangement of the magnetic moments (at low temperature)
are fully understood. The figure demonstrates the changes that take place in these
magnetic excitations when the mineral’s temperature is lowered by 10 K, from 125 to
115 K. The underlying change in behavior of the magnetic ions that causes the one
excitation to split onto two separate ones is still an object of study.

Another example of magnetic excitations is shown in Fig. 9.7. This figure, show-
ing the dispersion relation of magnons along various crystallographic directions can
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Fig. 9.5 The scattering in superfluid 4He under its own pressure as a function of momentum

transfer h̄q and energy transfer E = hν, measured by means on inelastic neutron scattering.

The strongest scattering corresponds to the darkest bands. A vertical cut through the data

at constant q= 2 Å−1 yields the data shown in Fig. 9.4.

be compared to the phonon dispersion shown in Fig. 4.11. In this particular example
on a magnetic material that consists of long chains of strongly interacting magnetic
ions with very weak interaction between the chains, the difference in excitation energy
between two magnon branches was directly proportional to a magnetic interaction be-
tween magnetic ions located on different chains. This interaction strength was needed
to figure out whether this system would be capable of supporting an oscillation in
its magnetic domains when a constant external magnetic field was being applied. An
(predicted) oscillatory response to a constant force is a purely quantum mechanical
effect, and the data shown in Fig. 9.7 demonstrated that this particular system was
not a good candidate to observe this peculiar effect.

9.2 Components of a 3-Axis Spectrometer

We will review the components of a 3-axis spectrometer, and what to pay attention
to when designing an experiment.

The aim of an experiment on a 3-axis machine is to get as accurate and detailed
information about one’s sample as possible. We outlined the basic workings of a 3-axis
spectrometer in the sense that we discussed how the incident and final energies are
determined by the monochromator and analyzer crystals, and that these choices in
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Fig. 9.6 Figure on the right reproduced with permission from R. J. McQueeney et al., Phys.

Rev. B73, 174409 (2006). Magnetite is the world’s most ancient magnetic material. It has been

used as a compass by the vikings, and its behavior is still not fully understood. In particular,

when cooled down below 120 K the mineral undergoes a structural phase transition that also

affects its magnetic properties. Neutron scattering experiments clearly show the changes that

take place in a high energy branch of excitations when crossing from the high temperature

structure (middle panel) to the low temperature phase (right panel). The photo on the left

shows iron filings becoming magnetized when in contact with a piece of magnetite (buried

underneath the iron hairdo).

combination with the angle at which we position our analyzer with respect to the
sample also determines the incident and final momentum of the neutron. We can then
use the detector to count how many scattering events take place for a given momentum
and energy transfer.

Fig. 9.7 Figure on the right reproduced with permission from W. Montfrooij et al., Phys.

Rev. B64, 134426 (2001). Invisible ink is great fun to play with, but it also is a low-dimensional

magnetic material. Magnetic chains run through the structure; the coupling between the

chains is so weak that a fully ordered structure does not emerge until the ink is cooled down

to fairly low temperatures. The strengths with which these magnetic chains couple to each

other can be deduced from a measurement of the (magnon) dispersion curve along various

directions in the crystal. Photo source: www.dreamtec.or.kr.
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In reality, we do have to accept a range of energies, and a range of momenta in
order to ensure that a sufficient number of scattering events will actually take place
and will be detected. All this is part of choosing the resolution of the spectrometer,
which is the most difficult part of any experiment. With resolution we mean the range
of energy transfers that will be allowed to constitute a scattering event, and the range
of momentum transfers that we are willing to accept.

Relaxing the resolution of a spectrometer results in more scattering events, and
therefore in a stronger signal compared to the background scattering. Obviously it
also comes with the drawback that our desired signals will get smeared out, even up
to the point that they can no longer be identified unambiguously as belonging to a
particular excitation. It is up to the experimentalist to walk the fine line between ob-
taining sufficient counts, and doing so in a way that the referee of the submitted paper
is not going to question the validity of the results.

In the following we outline the various spectrometer components and their role in
determining the resolution of the spectrometer. Some of the items here have already
been discussed before, however, we do not expect the reader to necessarily have read
the preceding instrumental chapters.

9.2.1 Shielding

We first start with the shielding, as this is a component that in most cases does not
require a lot of thought as it has already been put in place to provide the maximum
benefit in both reduction of exposure to radiation on the beam port floor, and in
shielding of the detector from unwanted neutrons that come from places other than
the sample.

There is one occasion where shielding issues might need to be addressed. One some-
times observes that there is an increase in background counts for a configuration of
the spectrometer that does not correspond to an expected increase in background.
One expects to see an increase in background when one tries to take measurements
at very small scattering angles where the straight through beam (those neutrons that
were not scattered by the sample) creates air scattering that can make it all the way
to the detector. However, there is an additional possibility of increased background
counts corresponding to the detector being in the path of the straight through beam,
even though the scattering angle is not small. This situation is depicted in Fig. 9.8.

Whenever one encounters an unexpected increase in background, then simply drive
the spectrometer motors to the configuration where this increase occurred, and look
for the source of the increased background. More often than not, it will be clear what
the source is, and shielding blocks and mats can be used to reduce the source of this
heightened background should the level of background scattering interfere with what
is being measured.
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Fig. 9.8 For certain scattering configurations, the detector housing can traverse the straight

through beam, leading to an increased level of background counts.

9.2.2 Stuff Upstream from the Monochromator

The monochromator crystal is in a direct line of sight with the beam tube that carries
neutrons away from the reactor core, and out onto the beam port floor. When this
beam tube represents a direct connection between the reactor core and the outside
world, then there will be a great many unwanted neutrons that will make it out of the
beam tube. These unwanted, very fast neutrons create a large amount of background
scattering, and the aim is to prevent them from ever reaching the monochromator.
Note, however, that if the beam tube is looking at a cold source, then this fast neu-
tron problem is greatly reduced.

When fast neutrons need to be removed from the beam, a sapphire (Al2O3) filter
is placed in the beam tube, or at the very end of it. This filter effectively removes all
neutrons with a wavelength shorter than 0.8 Å. It also removes some wanted neutrons,
but this is a loss that is well worth the price of cleaning up the beam. At some reac-
tors the filter is cooled to liquid nitrogen temperatures. At these temperatures fewer
wanted neutrons are scattered out of the beam by phonons that are present in the
sapphire. The only thing to remember here is that, if the filter is cooled, one must
make sure that is stays cooled during the course of the entire experiment. When it
warms up, it will subtly affect the experiment in the signal to background ratio. If in
doubt, use a warm filter. Other than that, either the instrument comes with such a
filter, or not, but it cannot be changed during the course of the experiment.

Some 3-axis spectrometers, such as TRIAX at MURR, allow for additional filters
to be placed between the beam tube and the monochromator crystal. If one wants to
use neutrons with incident energies below, say 25 meV, then it makes sense to remove
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as many higher energy neutrons from the beam as soon as possible. Some filters can
help with this. Simply look up the characteristics of the filter and decide whether to
use it or not depending on whether it removes unwanted neutrons more than wanted
neutrons.

The most important component upstream from the monochromator to think about
when designing a scattering experiment is the collimation. A collimator is essentially
a bunch of parallel channels, as shown in Fig. 9.19. Neutrons that hit the blades that
divide the channels will be absorbed. This way, the angular spread, or divergence, of
the incoming neutron beam can be controlled. This is important because a neutron
that will hit the monochromator crystal under a slightly different angle than the av-
erage angle, can still be reflected onto the sample: while the angle is slightly different
from the nominal angle, as long as the energy will also be slightly different from the
average energy, then reflection is still possible. This results in a spread of the neutron
energies that are allowed to make it to the sample.

By using a more tight collimation, implying that a smaller angular range is al-
lowed to make it through the collimator, one can control the range of energies of the
neutrons incident on the sample, at least to some extent. The monochromator crystal
will also have an intrinsic range of angles that it accepts for Bragg reflection onto
the sample (see monochromator mosaicity in the next subsection). In general, the two
angular divergences (of the collimator and the monochromator) determine the spread
of energies of the neutrons that make it to the sample. Squeezing the collimation down
to a divergence that is less than the mosaicity of the monochromator is probably not
a good idea; in this case one would throw away quite a few neutrons without gaining
any energy resolution because the monochromator crystal will reintroduce angular di-
vergence even in a divergence free beam. But it certainly makes sense to tighten up
the collimation such that it is comparable to the monochromator’s mosaicity, or a few
times that number. Typical ranges for collimation are 40-80 minutes (with 60 minutes
in a degree). 20’ pre-monochromator collimators are only used when one really has to
worry about the energy resolution, and 10’ collimators rarely lead to publications.

9.2.3 Monochromator

The monochromator crystal is the most important choice of the experimental setup.
Ultimately, this choice is determined entirely by the excitations in the sample that one
is interested in. First, the choice of monochromator determines the range of accessible
incident energies of the neutron. During an experiment, the angle of reflection Θm of
the monochromator can be varied from about 12o to about 50o. This angular range, in
combination with the lattice spacing dmono of the monochromator crystal, determines
the wave length of the neutron that is reflected and, thereby, the energy of the neutron.
The wave length λin is given by λin = 2dmono sin Θm, and the corresponding energy
Ein is given (in meV) by (see Appendix A) Ein = 81.8/λ2

in.

Given this, the first step is to figure out the maximum amount of energy transfer
that is needed in the scattering experiment. If this energy transfer exceeds something
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Fig. 9.9 The monochromator crystal is positioned with the aid of multiple motors. The user

normally does not have to deal with any of these motors. Shown here are three translational

motors, and two tilt motors. The monochromator crystal (not shown) would sit on top of this

plug. The plug is then hung upside down, and rotated as a whole when Θm is varied.

like 80 meV, then in most cases a triple axis spectrometer is not the right instrument
and one would be much better off at a spallation source. In Table 9.1 we show some
typical monochromator reflections that are used in neutron scattering, as well as their
corresponding energy range.

Within the limitations of these energy ranges, one now has a choice of which
monochromator to use. In most cases one selects pyrolytic graphite (PG) as this is a
monochromator that reflects a large fraction of the incident neutrons onto the sample
position. However, should the spread of energies that is accepted by this monochro-
mator result in too large an energy divergence, then one should use a more selective
monochromator, such as silicon.

There is an added benefit to using silicon as a monochromator. The second order
reflection- that is, the reflection by the monochromator of unwanted neutrons that
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travel twice as fast as the wanted neutrons- is forbidden. This greatly facilitates the
analysis of (magnetic) reflections and excitations, and it allows for more accurate
line shape analysis of all excitations. Silicon is not used in all cases, however, as the
reflectivity- the fraction of desired neutrons that are being reflected out of the main
neutron beam onto the sample- tends to be significantly lower than the reflectivity of
pyrolytic graphite.

Table 9.1 Commonly used monochromator crystals and reflections. The energy ranges cor-

respond to scattering angles Θm of 12o and 45o, respectively.

Material reflection d-spacing [Å] E-range [meV] comments

PG (002) 3.3539 42-3.6 high reflectivity

PG (004) 1.6770 168-14.5 ”

Cu (200) 1.8075 145-12.5 used for high energies

Cu (220) 1.27813 290-25 ”

Si (111) 3.13543 48-4.2 absence of second order

Si (220) 1.92005 128-11.1 ”

Si (311) 1.63742 176-15.3 ”

Si (511) 1.04514 433-37.4 ”

Ge (111) 3.26651 44-3.8 absence of second order

Ge (311) 1.70588 163-14.1 ”

Be (002) 1.79035 148-12.8

Monochromators such as copper are useful because they have a smaller lattice spac-
ing, allowing one to select neutrons with shorter wavelengths and, therefore, higher
energies. Copper itself does not have a terribly good reflectivity, so it should only
be used when other monochromators do not cover the desired energy range. And of
course, when using neutrons with high incident energies, make sure that there are no
filters left upstream from the monochromator that would reduce the number of neu-
trons of the desired energies. Table 9.1 can be helpful in making the monochromator
choice.

Quite a few 3-axis spectrometers allow for the monochromator to be bent, resulting
in a beam of neutrons that is focused on the sample, as opposed to quite a few neutrons
missing the sample. Such focusing techniques increase the angular divergence of the
beam and, thereby, it deteriorates the resolution of the spectrometer. Vertical focusing
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Fig. 9.10 Images taken from the ILL website (www.ill.eu). The ILL monochromator group

has succeeded in growing very large single crystals of copper (left) and a Heusler compound

(right). The mosaicity of these crystals can be adjusted post-growth.

does not deteriorate the resolution of the spectrometer nearly as much as horizontal
focusing. However, the gains in neutron counts might make even horizontal focusing
well worth it. It is up to the user to decide whether to use the focusing options. Fo-
cusing tends to be very beneficial when studying weak excitations in single crystals,
but biological materials are sometimes better studied under conditions of less angular
divergence. Note that not all monochromators can be focused; therefore, when one is
pressed for intensity, choose a monochromator that can be bent.

Finally, there are monochromators that only reflect neutrons of a particular spin
orientation. These monochromators are used in polarized neutron scattering. An ex-
ample of a (bad) polarizer is the (220) reflection of magnetite where for one particular
neutron spin orientation the magnetic and nuclear scattering mechanism (almost) ex-
actly cancel, resulting in the reflection of only the other spin orientation. Better polar-
izing monochromators are Heusler crystals. Needless to say, such monochromators are
only used when it is important to distinguish between magnetic and nuclear scattering.

The monochromator group at the Institute Laue-Langevin (ILL) can grow very
large copper, germanium, and Heusler single crystals, suitable for use as monochro-
mators. This group uses a plastic deformation technique to control and select the
mosaic of these crystals. We show two examples of their products in Fig. 9.10.

9.2.4 Monitor

The monitor intercepts a fraction of the neutrons that is being directed from the
monochromator onto the sample. The monitor works in the limit that the counting
rate is inversely proportional to the speed v of the neutrons: count rate ∼ 1/v. This
has two advantages.

First, only a very small fraction of the neutrons are intercepted so that the rest
can be used for learning about the sample. Second, this proportionality cancels a fac-



Components of a 3-Axis Spectrometer 167

tor (kf/ki, see eqn 4.1) that arises in the connection between how many neutrons
are scattered in a certain direction within a certain energy range (also known as the
double differential cross-section) and the dynamic structure factor (the quantity that
describes what is happening in the sample, independent of the probe we use). For the
record, this cancelation only works if we vary the incoming energy of the neutron and
we keep the final energy (as determined by the analyzer crystal) fixed. However, this
is the standard mode of operation of most 3-axis spectrometers.

So why mention the monitor at all? After all, it just tells us how many neutrons
are incident on the sample, and it is not likely that we are going to exchange it for
a different monitor. One of the reasons has already been alluded to. If we decide to
run the spectrometer in a different mode wherein we keep the incident neutron energy
fixed but vary the final energy, then we must account for the fact that our measured
signal is not directly proportional to what we want to know.

There is however another reason to mention the monitor that has to do with the
analysis of the data. In a typical scattering experiment, the monochromator not only
reflects the desired neutrons into the beam, but also neutrons that go twice, three
times, four times, etc. as fast as the desired ones. This is an inescapable consequence
of how the monochromator works. If the probing wave length of the neutron matches
the lattice spacing, then half this wavelength will also match the lattice spacing with
the result that those neutrons will satisfy the Bragg condition. This is the situation
where the wave that is drawn in Fig. 2.4 has only half the wavelength. As can be seen
here, all scattering will be in phase and, therefore, Bragg reflection will occur.

These neutrons- referred to as higher order contamination of the beam that hits
the sample- are scattered by the sample, but they do not (necessarily) make it to the
detector. The reason for the latter is that the detector is shielded from these higher
order neutrons by a filter that blocks them. This is further detailed in the subsection
on filters.

While it is good that they are not being detected, they nonetheless present a prob-
lem because we counted them as neutrons impingent upon the sample. And since our
signal is supposed to measure the fraction of good neutrons that are being scattered,
we run into a problem when we use the number of counts in the monitor as our normal-
ization. And since this contamination actually depends on what the incident energy
of the neutron is, we end up with a distortion of our measured line shapes. This can
be a problem when we hope to learn additional information about our sample based
upon line shapes, not merely upon whether peaks are present or not.

This is a problem that cannot be avoided other than by employing a velocity se-
lector; in general it can only be corrected for. This correction entails either making a
measurement of the level of contamination (which is not a straightforward procedure;
it is outlined in Appendix H), or it entails modeling the correction. The important
thing to keep in mind is that this problem does exist. Should it have the potential to



168 Triple-Axis Spectrometers

Fig. 9.11 The measured monitor contamination as a function of incident energy for the N5

triple-axis neutron spectrometer at the NRU reactor of the NRC Canadian Neutron Beam

Centre. The spectrometer was operated using a Si monochromator with a forbidden second

order reflection. The incident beam had a cooled sapphire filter in it to reduce the fast neutron

flux. Note that the fact that the monitor correction is essentially absent for experiments using

fixed final energies of 14 meV (a common choice in scattering experiments) is largely because

of the use of a Si monochromator. Other monochromators such as PG would not eliminate

second order contamination resulting in a noticeable effect even at these energies.

be a serious problem, then as a first defense one can switch to the (111) reflection of
a silicon or germanium monochromator as these reflections have the bonus property
that second order contamination is not possible (third order is however).

When should we expect this monitor contamination to be serious? It is most im-
portant when the energy of the incoming neutron is low, such as 5 meV. The second
order contamination in this case would correspond to neutrons with 20 meV in energy,
third order to neutrons with 45 meV and fourth order to 80 meV neutrons. All such
neutrons are abundantly present at thermal reactor sources, and we show an example
of monitor contamination in Fig. 9.11. For situations like this, the best remedy is to
measure the contamination and correct the data accordingly. It is also helpful to place
an additional neutron filter in the incoming beam.

For neutrons with an incoming energy of 14 meV, second order contamination cor-
responds to neutrons of 56 meV, and third order to 126 meV. The former is definitely
present in the beam, the latter tends to be mostly removed by a (standard) sapphire
filter.

The bottom line here is to most definitely be on the lookout for this instrumental
artifact, and do not get carried away during the analysis stages when uncovering an
unexpected line shape.
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9.2.5 Masks

In most experiments, the neutron beam tends to be taller and wider than the sample.
Masks are used to cut the beam down to the appropriate size. Masks are made of a
neutron absorbing material and by removing useless neutrons from the beam they can
significantly cut down on the background. The background in this case is caused by
the neutrons that miss the sample and scatter off of the sample containment such as
the cryostat, or by neutrons that give rise to air scattering.

To position the masks in the case of solid sample one chooses a Bragg reflection of
the sample, and squeezes the mask until the count rate goes down. Then, one rotates
to another Bragg peak of the sample such that the rotation of the sample corresponds
to the rotation range of the sample during the experiment, and one repeats the tight-
ening of the masks. The mask is then set to the loosest opening of the masks (jaws of
the mask).

Another method that is very elegant is to actually take a picture of the sample
in the beam using a neutron camera. Especially when this camera is coupled to a
computer screen one is sure to position the mask correctly. In the case of liquids or bi-
ological samples, the masks should be positioned to coincide with the sample container.

Normally there are two sets of masks, one between the monochromator and sample,
and one between the sample and the analyzer. There is no preference on whether the
masks should be as close as possible to the sample, or far away from it. The take home
message is that masks are good, they cut down on unwanted background without
reducing the sought after signal. Therefore, use them. Sometimes the jaws of the masks
are computer operated, which makes it all much more easy to position them as it does
not involve the somewhat tedious process of shutting off the beam, repositioning the
masks, turning the beam back on, and so forth.

9.2.6 Sample (Table)

The sample more or less is what it is, we have to setup the spectrometer in such a way
as to make the most of it. An important consideration when choosing one’s sample
(should one have such freedom) is that a typical sample should not scatter more than
10% of the incident neutrons. Samples that scatter more lead to problems with data
analysis as the multiple scattering contribution will be too large. Samples that scatter
only a wee fraction lead to very weak signals, possibly undetectable within the back-
ground signal. This of course holds true for all experiments, not solely for those on
3-axis spectrometers. The preferred sample shape on a 3-axis spectrometer is cylindri-
cal, but strongly absorbing samples will have to be measured in a slab geometry such
as shown in Fig. 9.13.

During the course of a scattering experiment, the sample rotation angle can be
varied to probe different directions of momentum transfer within the sample. The
neutron scattering angle determines the magnitude of the momentum transfer, the
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Fig. 9.12 An example of a low-tech set of masks. The (visible) non-adjustable rectangular

mask has been chosen to fairly closely match the desired beam profile. The adjustable jaws of

the mask behind it (not visible) are controlled by 4 screws for adjustment (the visible screws)

.

sample rotation angle determines along what direction within the sample this momen-
tum transfer was applied. Once the sample is properly aligned, the computer will take
care of the proper sample and scattering angles.

Fig. 9.13 A strongly absorbing sample should be mounted in slab geometry, such as the

one shown in this photo. This sample cell can be filled with a strongly absorbing powder; the

thickness of the cell can be varied from a few tenths of a millimeter to a few millimeters. The

sample cell can be housed inside a cryostat.
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Fig. 9.14 The tilt angles applied to the sample table under the cryostat are easily visible.

This is a light weight cryostat, do not attempt these angles with a large cryostat such as a

cryomagnet: it is guaranteed to break, or even lift the sample table off the floor.

Aligning a single crystal requires a bit of work, and we outline the procedure for
this in Appendix G. When using large pieces of sample environment such as a big fat
cryostat, then one is restricted in the tilt angles that can be applied to the sample
table before the whole thing falls over (Fig. 9.14). Typically, single crystals need to be
mounted within 5 degrees of their intended alignment.

9.2.7 Filters

We already discussed the filters that can prevent very fast neutrons from reaching the
monochromator, this subsection deals with removing unwanted neutrons with more
modest speeds from the beam. The most commonly used filters are graphite, beryl-
lium and beryllium-oxide. Diamond and plutonium filters are too specialized to be
discussed here.

A graphite filter is placed after the sample when running the spectrometer at fixed
final energy mode, and it is placed before the sample when running with fixed initial
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Fig. 9.15 Figure taken from the Neutron Scattering and Magnetism group at the ETH,

Zürich (www.neutron.ethz.ch). Shown is the transmission of neutrons through a 2 cm thick

graphite filter. The incident neutron energy- corresponding to the wanted neutrons and as

shown by the red line- is given on the horizontal axis. Note the region of incident ener-

gies around 14 meV where we find 90% transmission for the wanted neutrons, and only a

few percent for the unwanted, higher-order neutrons. Increasing the filter thickness to two

inches reduces the transmission for the unwanted neutrons to virtually zero, something that

is required in a magnetic scattering experiment.

energy. The reason that it needs to be on the part of the spectrometer where the energy
is always the same is because graphite only removes specific wave lengths (energies)
from the beam. Graphite works best when the fixed energy of the wanted neutrons is
around 14 meV. The graphite filter gets rid off neutrons that have energies of 56 meV
(second order contamination) and 126 meV (third order). We want to remove these
neutrons as the analyzer will reflect those particular wavelengths onto the detector
when the analyzer is set to 14 meV. Fig. 9.15 shows a typical transmission spectrum
of a graphite filter.

When doing magnetic experiments, one has to make sure that a sufficient quantity
of graphite filters is placed in the beam, of the order of 2” (see Fig. 9.16). The reason
for this is that weak antiferromagnetic scattering occurs at exactly the same spectrom-
eter configurations as nuclear scattering caused by second order neutrons. This second
order nuclear scattering can easily outcount the magnetic signal; however, graphite
filters can completely get rid off this unwanted contribution.

Beryllium and beryllium oxide filters get rid off all the neutrons that travel faster
than a particular cutoff speed. The cutoff for Be is 4 Å, for Be-O it is 3.7 Å. These filters
are used when the spectrometer is set to a low fixed final energy such as 5 meV. This
is an energy where a graphite filter would not be useful. Be and Be-O filters need to
be cooled to liquid nitrogen temperatures in order to reduce the phonon excitations in
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Fig. 9.16 Two one-inch filters of pyrolytic graphite. Once the filters are oriented properly,

they are held in place (with screws and scotch tape in this picture) so as to maintain the

orientation. These filters are surprisingly expensive, so do not drop them.

these filters that would scatter wanted neutrons out of the beam. Without cooling, the
transmission of these filters for wanted neutrons is very low. Therefore, always make
sure that the filter is kept at nitrogen temperature during the course of the experiment.
For reference, the cutoff energy is determined by the largest lattice spacing available
in these materials according to λcutoff = 2dlargest. Longer wavelengths cannot find a
lattice plane to scatter out of the beam and, therefore, these slow neutrons will be
transmitted by the filter (unless they encounter a phonon that might scatter them out
of the beam).

9.2.8 Analyzer

The function of an analyzer is to Bragg reflect neutrons with a particular energy out
of the scattered beam and onto the detector. In this sense, everything that holds true
for a monochromator crystal also holds true for the analyzer crystal. The acceptance
range of energies is determined by both the divergence of the scattered beam, and by
the mosaicity of the analyzer crystal. Fig. 9.17 shows the pyrolytic graphite analyzer
of the TRIAX spectrometer at MURR.

The choice of analyzer is much easier than the choice of monochromator: when
in doubt, choose pyrolytic graphite. Provided the rest of the spectrometer is set up
correctly, the only job of the analyzer is to reflect all the desired neutrons onto the
detector. The high reflectivity of graphite analyzers make them very well suited for this
job. Detectors tend to be so large that even focusing of the analyzer crystal produces
only modest effects. There are other analyzer crystals available, but the only crystal
that an average user might encounter is the Heusler analyzer crystal used in polarized
neutron scattering experiments.
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Fig. 9.17 The pyrolytic graphite analyzer crystal as it sits in the shielded housing on the

TRIAX spectrometer at MURR. This is an example of a flat (non-focusing) analyzer. A

graphite filter can also be seen located just to the left of the analyzer.

9.2.9 Detector

There is little we need to say about detectors. Good detectors (Fig. 9.18) count al-
most all of the wanted neutrons, and most detectors are good detectors. Only under
extreme circumstances, when we are dealing with very high energy neutrons, do we
have to worry about whether detectors count all the neutrons that go through it, or
preferentially those that travel at slower speeds. In addition, when 3-axis spectrom-
eters are operated using a fixed final energy for the scattered neutron, then all the
detected neutrons have identical energy implying that any energy dependent counting
efficiency factor would be irrelevant.

On 3-axis spectrometers we only ever need to worry about the detector when we
send too many neutrons in its direction. Strong sample Bragg peaks or moving the
detector through the unscattered beam will result in the detector being saturated. This
manifests itself as the detector maxing out at a high count rate (typically a few ten
thousand counts per second). Looking at the counting profile versus detector position
immediately makes it clear that the detector has maxed out. If one is interested in the
actual peak shape distorted by the saturated detector then one will have to put an
attenuator in the beam, such as some perspex glass, a paper copy of an annual report,
or this booklet.

9.2.10 Collimators and Resolution

The resolution of the spectrometer is determined by the incident energy, by the choice
of monochromator crystal and by the choice of collimators such as the ones shown in
Fig. 9.19. Other than the choice of incident energy, the resolution of the spectrometer



Components of a 3-Axis Spectrometer 175

Fig. 9.18 While most detectors on 3-axis spectrometers are rectangular boxes, on TRIAX

the detector consists of 7 pencil detector positioned in a bowling-pin-like formation. The user

can choose which detectors to add together for the sought after signal, while at the same

time getting an indication of the background signal by using the outer pencil detectors. The

photo shows the electrical leads going into the shielding, from which the positions of the 7

detectors can be inferred.

is determined by controlling angular divergences of the neutron beam.

As a note up front, the resolution of the spectrometer is a 4-dimensional entity,
describing the energy resolution (1 component) and the resolution pertinent to mo-
mentum transfer (3 components). Since the energy and momentum transfer of the
neutron are both determined by the incident and final momentum vector of the neu-
tron, we have that the energy resolution and the q-resolution are interrelated. Changing
one component influences the other three. In general, it is not intuitively clear how
a change in collimation, for instance, will affect the energy resolution, but programs
exist to (roughly) estimate these effects.

Lowering the incident energy is the most effective way of improving the energy
resolution, at the cost of restricting the accessible (q, E)-range for the experiment.
This holds true for a 3-axis spectrometer, but note that time-of-flight spectrometers
at spallation sources do not abide by this principle. For the latter category, the best
energy resolution is found for energy transfers close to that of the incident neutron
energy. The second most effective way of improving the resolution is to change the
collimators, as already discussed in our chapter on diffractometers.

As mentioned, there are programs available to help the user estimate the resolution
function of a 3-axis spectrometer. A very effective and well-documented piece of soft-
ware is RESLIB, which is written in MATLAB. We reproduce typical output of this
program (from the manual by Andrey Zheludev) in Fig. 9.20. This figure represents a
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Fig. 9.19 Controlling the angular divergence of the neutron beam between two components

of the spectrometer (such as between the sample and the analyzer) fixes the angular spread

of the neutrons that can still reach the next component. Since the scattering angles at the

monochromator and analyzer determine the incident and final energy, respectively, the choice

of collimator affects the range of energies of the accepted neutrons. Shown is a variety of

collimators that can be used, with the smallest angular divergence corresponding to the

highest energy resolution.

single crystal that has been oriented in such a way that we can transfer momentum in
the x and y-directions, which form the scattering plane. We can also transfer energy
to and from the sample. This is captured in the plots which show the resolution ellipse
in the xy-plane for various values of energy transfer.

The orientation of the ellipse (the direction of the main axes of the ellipse as well
as its tilt) depends strongly on energy transfer. Also, with increased energy transfer
we see that the ellipse gets larger, implying that the resolution gets worse. The change
in orientation of the ellipse in the xy-plane is very hard to quantify intuitively, which
is why it is good practice to run programs such as RESLIB routinely when taking data
on 3-axis spectrometers.

Scrutinizing Fig. 9.20, we see that the resolution ellipse has a tilt to it when pro-
jected onto the xE-plane, or onto the yE-plane (the vertical walls in the figure). This
has important implications when we measure the dispersion of phonons or magnons.
Depending how well the tilt of the resolution ellipse and the slope of the dispersion
curve line up, we will get more or fewer scattering events. When the tilt and the slope
match closely, then we will sample the dispersion over a range of momentum transfers
and we can expect quite a few scattering events. This is called the focusing condition,
or focusing side of the dispersion. When the tilt and the slope are almost perpendic-
ular to each other, then we will get very few scattering events, and we call this the
defocusing condition. We show a typical example in Fig. 9.21.
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Fig. 9.20 Sketch of the energy resolution’s dependence on the amount of energy transferred

as a function of direction of momentum transfer. This plot has been reproduced from the

RESLIB manual by Andrey Zheludev, and it also dons the cover of ’Neutron Scattering

with a Triple-Axis Spectrometer’ by Shirane et al. The yellow ellipses show the resolution

corresponding to the energy transfers plotted on the vertical axis. At the edge of the yellow

ellipse, the scattering intensity has dropped to half the maximum intensity that is measured

at the center of the ellipse. Projections of the ellipses are shown on the sides of the cube.

Note that both the overall size of the ellipse, as well as its orientation, change as a function

of energy transfer. This plot has been calculated for neutrons that all have the same fixed

final energy.

The tilt of the resolution ellipse is determined by the final energy of the neutrons.
In other words, the user has control over this tilt, and the experiment can even be
set up to have a perfect match between the slope of the dispersion and the tilt of the
resolution ellipse. This would result in a very high scattered intensity. However, use
this perfect matching with extreme caution. When the match is perfect for acoustic
phonon or magnons, then it implies that our resolution ellipse will also cover the Bragg
peak at zero energy transfer. Since the scattering of a Bragg peak is millions of times
larger than the inelastic scattering by phonons, we run the risk of actually sampling
the tails of the Bragg peak rather than the elementary excitations we are interested in.
In practice, it is better to not get too greedy and have a slight misalignment between
the tilt and the slope of the dispersion curve.
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Fig. 9.21 Figure reproduced with permission from R. J. McQueeney et al., Phys. Rev. B73,

174409 (2006). Shown on the left is the dispersion of (one branch of) magnons in magnetite,

and the (projection of the) resolution ellipses relevant to various energy and momentum

transfers. In this particular experiment, the absolute intensity and the line shape of the

scattered signal were needed in order to resolve the behavior of the atomic magnetic moments.

As can be seen, these numbers can only be determined accurately from experiment when we

take the size and orientation of the resolution ellipse into account. The panel on the right,

corresponding to the resolution ellipse label ’(0,0,4.3) D’ in the left panel, demonstrates the

asymmetry that will be introduced in the line shape: the peak displays a high energy tail.

9.2.11 Spurions

Spurions are not actually a component of a 3-axis spectrometer, but they are an
unwanted artifact whose appearance depends on the setup and components used on
the spectrometer. Spurions look like peaks caused by scattering by the sample and
they cause great excitement in the user because they look like a publication in Science
or Nature. However, they are spurious signals caused by unfortunate combinations of
events. We discuss these spurions in our chapter on data analysis (Chapter 12), this
little paragraph merely serves as a warning.

9.3 General Considerations When Doing Experiments

Triple-axis spectrometers are versatile instruments that are used for measuring various
excitations. Depending on the type of excitation one is interested in, the spectrome-
ter setup will be slightly different. We will discuss examples for measuring the phonon
dispersion and the magnon dispersion in single crystals, and for measuring soft modes.

We start with phonons. Phonons are excitations that can be started by, or absorbed
by the neutron. The likelihood of this happening depends on how much momentum
the neutron transfers along the direction of movement of the atoms that constitute
the phonon wave. This makes sense because atoms will only move (in an oscillatory
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pattern or not) in the direction that they are being pushed in. A guy named Newton
mentioned something to this effect. This implies that the cross-section for phonon
creation or absorbtion (annihilation) is proportional to

d2σ

dΩdE
∼ (~q.~e)2,

with ~e a vector of length 1 pointing in the direction of movement of the atoms. This
vector is also referred to as the polarization vector of the phonon mode.

When the oscillatory movement of the atoms is in the direction of propagation,
then we call this phonon excitation a longitudinal mode. When the movement of the
atoms is in the direction perpendicular to the propagation direction of the phonon
mode, then we call it a transverse phonon. If we want to map out a longitudinal
phonon, which can be an acoustic or optical phonon, then we should measure at high
momentum transfers, and make sure that most of the momentum transferred is in
the longitudinal direction. For example, in a cubic system we would do a good job
measuring the longitudinal phonon excitation by imparting a momentum transfer of
(4 + h, 0, 0) to the sample. In contrast, if we want to measure a transverse phonon,
then we should impart (4, k, 0) in momentum, or (4, 0, l). These choices ensure that
the factor (~q.~e)2 is large.

Why not measure at even higher momentum transfers, such as at (8 + h, 0, 0), in
order to further increase the cross-section? To answer this question, we first have to
look into why we can measure the same dispersion using different values of momentum
transfers. In other words, why do (h, 0, 0) and (4 + h, 0, 0) scans yield the same infor-
mation about the phonon dispersion? Or, phrased differently, why can we measure in
different Brillouin zones? (A Brillouin zone is the region in q-space around a Bragg
peak that encompasses those q-values that are closer to this particular Bragg peak
than to any other Bragg peak). The answer to this can be seen in Fig. 9.22. Shown is
a neutron probing wavelength that matches the relative movements of the atoms in a
transverse phonon excitation.

It is probably clear by now that a probing wavelength matching some length scale
in the sample would indeed result in constructive interference. For example, in Fig.
9.22 a maximum positive amplitude of an atom partaking in the wave is probed with
a phase that is 180 degrees different from the atom that is subject to a maximum
negative amplitude. This probing wave (as shown in the figure) would correspond to
momentum transfers in the first Brillouin zone: (0, k, 0). However, we can also exactly
match the motion of the atoms with a probing wavelength that is much shorter, cor-
responding to measuring in the second Brillouin zone: (0, 1 + k, 0). Graphically (Fig.
9.22) it is easy to verify this assertion since both the probing wave with shorter wave-
length, and the probing wave with longer wavelength, probe the atomic displacements
with the same relative phases.
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Fig. 9.22 Figure adapted from Squires’ ”Introduction to the Theory of Thermal Neutron

Scattering”. Depicted is a transverse phonon whose direction of propagation is from left to

right, which is taken to coincide with the crystallographic a-axis. A probing wave with wave-

length λprobe = d/h along the a-direction, samples the relative displacements of the atoms

with the same phases as a probing wave with a much shorter wavelength λprobe = d/(1 + h).

In the depicted example, d is the separation between the atoms along the a-direction, and

h=1/8.

The same reasoning holds for when we probe the atomic displacements in Fig. 9.22
with even shorter probing wave lengths, such as (0, 8 + k, 0). However, in practice we
would not find a large scattering cross-section for the latter case. The reason for this
has to do with the Debye-Waller factor. The atoms will not only move in the direction
of motion dictated by the phonon, they will also move in other directions because of
thermal and zero-point motion. For instance, the atoms in Fig. 9.22 will also move
from left to right, albeit in a random way. This randomness will introduce differences
in the phase with which the atoms are being probed. Imagine an atom being displaced
a fraction to the right by a distance u = |~u| from its ideal position in the phonon
wave. The change in phase angle will be given by ~q.~u. If the probing wave length is
large, then this change in phase will be small and almost negligible. However, for short
probing wave lengths this change in phase will be large, even to the point that it can
easily represent a change in phase of 180 degrees. All this is simply saying in words
that phonons are subject to the same Debye-Waller factors as Bragg peaks are:

d2σ

dΩdE
∼ e−q

2u2

(~q.~e)2.

The bottom line for phonons is that large momentum transfers are helpful, but mo-
mentum transfers that are too large are not so useful because the Debye-Waller factor
will quickly kill off the scattered intensity. Combining this consideration with our
choice of studying longitudinal or transverse phonons, and combining it with whether
we want to be on the focusing side or the defocusing side of the dispersion curve, we
automatically find that there is an optimum place to look for a particular phonon.
And by place we, of course, mean a particular Brillouin zone.
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Propagating magnetic excitations, called spin waves or magnons, can also be stud-
ied with neutrons. The cross-section for exciting or absorbing a magnon is proportional
to

d2σ

dΩdE
∼ F (q)2e−q

2u2 ∑
αβ

(δαβ − qαqβ/q2)Sαβ(~q,E). (9.1)

In here, δαβ= 1 when α = β and zero otherwise, with α and β cartesian coordinates.
This equation is a bit more formidable than the previous ones. The same Debye-Waller
factor shows up because the magnetic moments are located on atoms which are still
moving in a random fashion. In addition, we have a magnetic form factor F (q) which
is the Fourier transform of the electronic cloud. An example of the q-dependence of
such a form factor was shown in Fig. 5.5; essentially, this form factor imposes that
the scattered intensity diminishes quite rapidly when the probing wavelength becomes
comparable to the size of the electron cloud. This is a straightforward interference
effect.

The magnetic dynamic structure factor Sαβ(~q,E) is a measure of the correlation
between the magnetic moments that are pointing in the α-direction at t′=0, and in
the β-direction at t′ = t. When we state that it is a measure of this, we mean that we
measure the Fourier transform (from time to energy) of this correlation function. How
strong the scattered signal is depends on the orientation of the q-vector as given in eqn
9.1. For instance, if one is interested in Szz(~q,E) and if the direction of momentum
transfer is also exactly along z, then the scattered intensity will be zero since in this
case we have that (δαβ − qαqβ/q2)= 1-1= 0. Thus, in magnetic scattering the q-vector
always needs to have a component perpendicular to the magnetic moment direction
that one is interested in. This is a peculiarity of magnetic neutron scattering which
makes it a bit harder to carry out, but it also gives the user more power to distinguish
between, for instance, Szz(~q,E) and Sxx(~q,E).

Note that this q-dependence to the cross-section is not restricted to inelastic mag-
netic neutron scattering; elastic scattering has the same q-dependence. Therefore, if
one probes magnetic order where the moments are lined up along the c-axis of a
crystal, then one will only observe Bragg peaks when there is momentum transferred
perpendicular to the c-direction. This is in fact very handy because it allows the user
to determine the orientation of the magnetic moments in an ordered structure.

In summary, magnons are measured at low q-values to counteract the effects of the
Debye-Waller factor and the magnetic form factor. The Brillouin zone for measuring
the magnon dispersion is chosen such that a large fraction of the momentum trans-
ferred is along the direction perpendicular to the magnetic moment direction that one
is interested in studying. The considerations for focusing versus defocusing are identi-
cal between magnons and phonons.

Collective excitations in liquids and amorphous materials are always measured at
low momentum transfers. We can view this case as an extreme case of the Debye-Waller



182 Triple-Axis Spectrometers

factor. Without the repeating structure that solids have, only very large probing wave-
lengths will generate any constructive interference. In contrast, single atom excitations,
such as the motion of an atom locked up in the cage formed by its neighbors, can be
measured at very high momentum transfers for the case of atoms with a large coher-
ent cross-section. For the case of atoms with a large incoherent cross-section, these
individual-atom excitations can be measured at all momentum transfers.

Lastly, some structural phase transitions are heralded by so-called soft-mode be-
havior of a phonon. Below the phase transition temperature, the symmetry of the
crystal is lower, and what used to be one position for an atom has now been split
into two equivalent positions. At high temperatures there is enough thermal energy
available to the atom to move from one position to the other, but close to the phase
transition temperature it will be easier and easier to ’push’ the atom from one position
to the other and make it stay there.

When we do this ’pushing’ using a neutron we find that we only need to transfer
a small amount of energy to the atom to make it move, compared to at high temper-
atures where we needed to supply a substantial amount of energy. Thus, the energy
requirements to excite this phonon have diminished, and the phonon energy drops
close to zero. When it drops all the way to zero, then we say that the mode has soft-
ened completely, and we observe that a new Bragg peak has formed since we are now
looking at elastic scattering where no energy needs to be transferred to the sample.
Such a phase transition characterized by a soft-mode is a welcome object of study on
a 3-axis spectrometer.

Soft-modes, as well as quasi-elastic scattering associated with a disordered phase
in liquids, amorphous systems or paramagnetic solids, are fairly straightforward exci-
tations to study using a 3-axis spectrometer. The energies involved are low and easily
achievable. The main consideration in performing these experiments are related to the
resolution of the spectrometer. There will always be some unwanted elastic scattering
events (such as neutrons being scattered through the incoherent cross-section) that
will interfere with our low-lying (in energy) excitations. The resolution has to be tight
enough so that these unwanted scattering events do not mess up our sought-after sig-
nal. Other than that, the main errors that one is likely to make are in the analysis of
the data, in particular in deciding whether a soft-mode is just very soft, or whether it
has softened completely. We will detail how to deal with this in Chapter 12.

9.4 Exercises

Exercise 9.1

Make a sketch using the vectors ~kinitial, ~kfinal and ~q laid out in a triangle that shows
the difference in measuring inelastic scans at constant scattering angle, versus doing
inelastic scans at constant momentum transfer.
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Exercise 9.2

What is the main problem with the following experimental procedure? We want
to study the low-temperature excitations in a single crystal. We put the crystal in a
cryostat, and align it using two Bragg peaks in such a way that the sample table tilts
under the cryostat do not exceed a few degrees. Then, before we go home we tell the
instrument computer to cool the sample down, and once it has reached the desired
temperature to wait for an hour to make sure the sample is at the right temperature,
and to start measuring the excitations by probing the correct Brillouin zone.

Exercise 9.3

The energy transfer from the neutron to the sample on most 3-axis spectrometers
is done by varying the incident energy, while keeping the final energy of the neutron
fixed. Give two reasons why this is the preferred method (in most cases) over the
method where we vary the final energy while keeping the incident energy fixed.

Exercise 9.4

In order to measure the dispersion of an acoustic sound wave, whose dispersion
relationship is given by E = h̄cq with c the adiabatic speed of sound, we have the
requirement that neutrons need to have an incident speed that is at least as large as
the speed of sound c. Use the laws of energy and momentum conversation to verify
this statement.

Exercise 9.5

Use the instrumental fact sheet for HB3 (Table 11.2) to determine whether the mag-
netic excitations in magnetite, shown in Fig. 9.6, can be measured on HB3. Discuss
the choice of monochromator, instrumental setup, anything relevant. The excitations
in this cubic system occur at momentum transfers of (0,0,1/2) and (4,0,1/2), with the
reciprocal lattice vector a∗ = 2π/a = 0.75 Å−1 so that a momentum transfer of (4,0,0)
corresponds to q = 3 Å−1.
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Other Noteworthy Instruments and
Methods

In this booklet we have focused on the scattering of the neutron by the nuclei of the
atoms, be it coherent or incoherent scattering. We cursorily mentioned magnetic scat-
tering, but we have not paid much attention to the intrinsic magnetic moment of the
neutron, most commonly referred to as the spin of the neutron. In this chapter we
look at techniques that utilize the spin of the neutron to learn more about the sample,
either through encoding information into the neutron’s spin (spin echo technique), by
using the spin to split the neutron in two (yes, we know) as is done in the SESANS
technique, or by utilizing the orientation dependent scattering cross-section of a neu-
tron and an atomic magnetic moment (semi-polarized neutron scattering). All three
methods can only be used for very specific problems, but when they can be used they
reveal information about the sample that cannot be obtained by other means.

10.1 Spin Echo Spectrometers

Spin echo spectrometers, originally developed by Ferenc Mezei and John Hayter, are
used for inelastic neutron scattering experiments during which very small amounts of
energy are transferred to the sample. Typical energy transfers are in the range of neV-
µeV, amounts much smaller than are accessible through the scattering experiments
discussed so far.

Spin echo spectrometers do not actually yield the dynamic structure factor, rather
they measure the demise of correlations as a function of time. Thus, the user gets
direct information about the intermediate scattering function F (q, t) (See Table 4.1),
the same function that is being accessed in molecular dynamics computer simulations.
The time scale of the motion that is being probed is quite long (compared to the
picosecond time scales one tends to measure on a triple-axis spectrometer). One typi-
cally can follow the decay of correlations from a few picoseconds all the way up to tens
of nanoseconds. The ability to probe such slow decays make spin echo spectrometers
well suited to study the dynamics of polymers and biological systems, but also the
slow dynamics in the glass state of amorphous materials. The dynamic range of spin
echo spectrometers is shown in Fig. 10.1.

The spin echo technique is based on encoding the change of speed of the neutron
during a scattering event into the spin orientation of the neutron. This encoding is
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Fig. 10.1 Source: ’NCNR Summer School on Methods and Applications of neutron Spec-

troscopy’, 2007. Shown is the dynamic range (q,E) that can be probed by various neutron

scattering spectrometers. Momentum transfer is shown at the bottom, the corresponding

probing length scale at the top. The energy transfer is shown on the right hand scale, and

the corresponding characteristic time scale of relaxation is shown on the left hand scale. As

is clear, spin echo spectrometers are instruments that probe the dynamics of systems on

much longer timescales and larger length scales that more commonly used neutron scattering

instruments.

done by using magic, and it is sketched in Fig. 10.2. One starts by only selecting neu-
trons with a particular spin orientation (called either spin-up or spin-down neutrons)
using a polarizing device. We do not need to look into the details of the polarizing
device, we will just assume that it works very well (as it does), and that only half of
the neutrons that were part of the beam that came out of the reactor make it through
this device, yielding a fully polarized beam of neutrons.

Next, the spin of the neutrons is made to precess by guiding the neutrons through
a region where a permanent magnetic field is pointing perpendicular to the spin di-
rection of the neutron. The angle over which the neutron’s spin orientation precesses
depends on how long the neutron takes to traverse this region of space where there is
this magnetic field. This in turn depends on the speed of the neutron and, therefore,
the angle of precession that the neutron endured and the speed of the neutron are
related to each other in a reproducible manner. Thus, the speed of the neutron has
been encoded into the spin of the neutron.
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Fig. 10.2 Source: ’NCNR Summer School on Methods and Applications of neutron Spec-

troscopy’, 2007. Sketched is a schematic diagram of the components that constitute a spin

echo spectrometer. A velocity selector monochromizes the beam, which is then sent through

a polarizer to select one of the two possibilities for the orientation of the neutron spin. The

neutrons are then sent through a magnetic field where the orientation of the spin is forced

to precess. The neutrons then interact with the sample, and the precession of the spin is re-

versed in the second region of identical magnetic fields. A final polarizer only allows neutrons

to pass with the same spin orientation as the ones that were selected in the first polarizer.

How many neutrons make it through this second polarizer is a measure at how effective the

second magnetic field was in undoing the spin precession. Less than perfect undoing of the

precession implies that the neutron has gained or lost some of its speed during its interaction

with the sample. The labels π and π/2 denote over what angle the spin orientation of the

neutron is flipped at some stages, but this flipping is instrument dependent and not essential

to understanding how changes in speed are encoded in the neutron’s spin orientation.

After emerging the magnetic field region, the neutron will interact with a sample.
During this interaction, the neutron will transfer momentum to the sample, and it will
gain or lose some speed. As always, we will gauge the amount of momentum that has
been transferred by placing our detector at a certain scattering angle. The change in
speed, however, is not measured by using an analyzer crystal, rather is is determined
by forcing the spin orientation of the neutron to undergo the opposite precession.

After exiting the sample, the neutron is guided through a region where there is once
again a permanent magnetic field, in all aspects identical to what was used before. Ac-
tually, after exiting the sample, but before entering this second region of magnetic
fields, the spin of the neutron is flipped by a device called a spin-flipper (again, no
details in this write-up). A spin with the opposite orientation will precess in the op-
posite direction and, therefore, we can expect the spin precession to be completely
undone, provided the neutron is traveling just as fast as before interacting with the
sample. Should this be the case, then we regain the exact same orientation of the spin
as it had when it emerged from the polarizing device. Sending this neutron through a
second polarizing device that only transmits (or reflects) neutrons of a particular spin
orientation, we would obtain a 100% signal in the detector (that is, all neutrons that
emerged from the initial polarizer and that were scattered over a particular angle, will
be counted in the detector). All this is correct provided the neutron did not change
its speed. This 100% recovery of the initial spin orientation is called the spin echo.
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Fig. 10.3 Source: ’NCNR Summer School on Methods and Applications of neutron Spec-

troscopy’, 2007. The spin echo spectrometer NSE located in the cold source guide hall at

NIST. In the magnetic field region (green cylinder marked ’1’) the spins of the polarized

neutrons are forced to precess, after which they interact with the sample which is located

between the two magnets. The magnet on the left (labeled ’2’) undoes the spin precession

as far as the interaction with the sample allows, and the resulting degree of polarization is

measured in the black box on the far left. The scattering angle can be varied by moving

magnet ’2’ across the floor using air pads.

Note that this spin echo effect does not depend on the speed of the neutron, it
should work for neutrons of all wave lengths. This is very helpful as this implies that
we can utilize neutrons with a pretty large spread in incident speeds (energies), greatly
enhancing the data collection rate of spin-echo instruments. For this reason, one tends
to use a velocity selector to set the (average) incident wave length of the neutron,
rather than using a much more restrictive monochromator.

If the neutron did suffer a change in speed, then the precession will not be undone
exactly, since the neutron will now spend more or less time in the second region that
has a magnetic field. As a result, not 100% of the neutrons will make it past the second
polarizer device, and our detected signal will be weaker. Exactly how much weaker de-
pends on the change in the angle of the spin orientation, which in turn depends on the
change in speed. Thus, the strength of the signal is a measure of the change of speed of
the neutron. There is, of course, some math involved in figuring out exactly what the
relationship between the strength of the signal and the change in speed of the neutron
looks like, but the important thing to note here is that the two are related to each
other and, therefore, by measuring one (the loss of polarization), we glean information
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Fig. 10.4 Source: ’NCNR Summer School on Methods and Applications of neutron Spec-

troscopy’, 2007. Data taken by G. Ehlers et al. on IN11 at the ILL. Spin echo data on the

spin-ice system Ho2Ti2O7 show that the relaxation time of excitations increases with decreas-

ing temperature by two orders of magnitude (upper panel). The bottom panel shows that the

relaxation time is independent of momentum transfer, implying that the processes that are

being studied must have a local, single-ion origin.

about the other (the change of speed).

The above description is about the operating principles of a generic spin-echo spec-
trometer such as the neutron spin-echo spectrometer NSE located at NIST (Fig. 10.3),
the actual details vary from instrument to instrument. As mentioned, the strength of
the signal will be a measure of the intermediate scattering function F (q, t). In here,
we will ignore the fine details of how measuring the change of speed of the neutron
through the overall loss of polarization leads to a signal that yields F (q, t). Obviously,
q will be directly related to the scattering angle through the Moireé interference pat-
terns that we have seen in previous chapters.

The appearance of the time variable t is not straightforward to see. In spin-echo
language it is referred to as the Fourier time, reflecting that the spin-echo instrument
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effectively does a weighted average over all inelastic scattering events that produce
scattering at a certain momentum transfer. Unlike the case of a detector in a diffrac-
tion experiment which simply counts all scattering events and thereby integrates over
the dynamic structure factor S(q, E) to produce S(q), the weighing over all inelas-
tic scattering events in a spin-echo experiment is achieved in the polarizer through a
transmission rate that reflects the spin precession of the neutron, thereby introducing
a term ∼cos(ωt) (with E = h̄ω) in the weighing procedure. The averaging over all
possibilities weighed by cos(ωt) now produces the Fourier transform of S(q, E), the
intermediate scattering function F (q, t).

The (Fourier)-time t itself can be manipulated by the user by varying the strengths
of the magnetic fields. Therefore, in a spin-echo experiment, one positions the detector
at a certain scattering angle, and then measures F (q, t) for all accessible t’s by scanning
the magnetic field strength. An example of what can be measured is shown in Fig.
10.4

10.2 SESANS

SESANS stands for spin echo small angle neutron scattering and it is a technique to
perform small angle neutron scattering without using restrictive collimators. It does
this by using the spin of the neutron to encode information about the scattering an-
gle. The technique itself is still under development, with the one instrument that is
currently operational located at the Delft research reactor (Fig. 10.5).

The SESANS technique is used to probe very large structures, on length scales
ranging from tens of nanometers to tens of micrometers. The signal that one mea-
sures is the fraction of the initial polarization of the neutron that survives, similar
to the spin echo technique described in the preceding section. However, this loss of
polarization is not measured as a function of (Fourier)-time, rather it is measured as
a function of distance. This distance, called the spin-echo length, is a direct measure
of distances in the sample. Thus, SESANS measures correlations in real space, rather
than in reciprocal space as is the case for all neutron scattering techniques described
thus far. Also, SESANS is an elastic scattering technique, it does not measure a signal
as a function of energy transferred to the sample.

The SESANS technique was largely developed by Roger Pynn and Theo Rekveldt,
and it is based on having a single neutron follow different paths through a sample
depending on the spin orientation of the neutron. When the setup is just right, we can
have that a neutron of known polarization ’splits’ up into two. With ’splitting up’ we
mean that this neutron would be just as likely to follow one trajectory as it is to follow
a second trajectory. As long as we do not look, the neutron will follow both trajectories
simultaneously according to the main law of quantum mechanics that states that a
particle behaves like a wave when one does not look.

The way this splitting is realized in practice is sketched in figure 10.6. A neutron
whose spin orientation has been chosen to point in a particular direction, such as out
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Fig. 10.5 Source: website TUDelft (www.tnw.tudelft.nl, keyword sesans). The spin echo

small angle neutron scattering spectrometer located at the research reactor of the Technical

University Delft (the blue instrument on the left). The silver box in the foreground houses

the detector, the blue cylindrical shape has the polarizer crystal in it. Further upstream we

can see the magnetic field coils.

of the page in Fig. 10.6, can be regarded as being a superposition of two states (that
is, possibilities): one of a neutron whose spin is pointing to the top of the page, and
one of a neutron whose spin is pointing to the bottom of the page. This neutron is
then guided through a region of magnetic fields where the equivalent of diffraction will
occur. In fact, it is not the equivalent of diffraction, it is identical: diffraction governed
by the wave-like properties of the neutron.

The path along which the neutron is diffracted depends on its spin polarization,
resulting in a real physical separation between the two possible paths. And since our
neutron was equally likely to have either spin orientation, both paths will be traveled
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Fig. 10.6 Source: website TUDelft (www.tnw.tudelft.nl, keyword sesans). The way the

SESANS technique works can be visualized by showing the two possible paths that a neutron

can take. The real neutron will exist as a superposition of two neutrons taking these two

paths. The two trajectories are determined (and controlled) by the magnetic fields that exist

in the blue and red colored regions. The fields are constructed in such a way that the two

paths merge at the exit point, unless the neutron suffered some interaction with the sample

(blue area) that originated in inhomogeneities within the sample that exist on the length

scale corresponding to the separation between the two paths.

with equal probability. After the neutron (both halves) has traveled through the re-
gion where we can place the sample (Fig. 10.6), the spin orientation of the neutron is
flipped, and the neutron travels through identical magnetic fields, undoing any sepa-
ration between the two trajectories. When we place a polarizer- that only transmits
neutrons with the same polarization as the initial polarization- at the exit point of
the magnetic field, then we will find that 100% of the neutrons make it through the
polarizer. This is the spin echo signal similar to the signal in standard spin echo mea-
surements. This 100% signal will only be measured, of course, if there was no sample
placed at the center of the magnets.

When we place a sample in the center of the magnets, then this sample can scatter
neutrons. If this sample is not homogenous on length scales corresponding to the sep-
aration between the two trajectories, then the two trajectories no longer correspond
to equal likelihood of being scattered. Should this be the case, then the two trajec-
tories can no longer merge into one identical trajectory before exiting the magnetic
field region. As a result, we we lose our 100 % polarization, and not all neutrons will
make it through our polarizer and be detected. Thus, we observe a loss of polarization
directly attributable to sample inhomogeneities on length scales corresponding to the
separation between the two trajectories (the so-called spin echo length).

By varying the strengths of the magnetic fields, the separation between the two
trajectories can be fine-tuned, and we can measure the loss of polarization caused by
our sample as a function of spin echo length. Spin echo lengths can range from 20
nm to 20 µm. The geometry of the magnetic fields is such that a neutron that comes
in not exactly along the horizontal line sketched in Fig. 10.6 will still undergo the
identical ’splitting’ and ’recombining’. Thus, there is no need for tight and restrictive
collimation in front of the magnetic field region. This greatly enhances the intensity
of our signal compared to SANS and ultra SANS techniques.

As mentioned, this is a new technique and not all about what can be measured- and
what is being measured- have been worked out. In Figs. 10.7 and 10.8, we show two
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Fig. 10.7 Source: website TUDelft (www.tnw.tudelft.nl, keyword sesans). Suspensions of

(hard-sphere like) silica spheres provide a good example of the direct measurement of the real

space correlation function. This function measures the likelihood of finding another sphere at

a distance z away from a sphere located at the origin. For a dilute suspension (top panel),

the correlation function simply displays a drop when we move away from the origin, and the

polarization level drops to 50 % once we go beyond the diameter of the sphere (300 nm for the

silica spheres). Increasing the density of the suspension (middle panel) to liquid like densities

makes a dip in the correlation function visible which can be attributed to the excluded volume

effect of the hard spheres. When the density reaches close packing densities, we can clearly

see the peaks corresponding to nearest and next nearest neighbor distances (bottom panel).

examples of some of the experiments that have been performed at the Delft spectrome-
ter. As can be seen in these figures, this technique is sensitive to measuring correlations
over large length scales (large compared to what is measured in SANS experiments).
It is not clear at the moment whether this technique will find as widespread appli-
cation as the (now) standard spin-echo technique. As an ending note in this section
we mention that this technique is now being developed for use in spin-echo neutron
reflectometery so that advantage can be taken of not having to deal with restrictive
collimators.

10.3 Semi-Polarized Scattering

Semi-polarized neutron scattering is used when we wish to study weak ferromagnetism.
A neutron can be scattered by the nucleus of an atom, or by the unpaired electrons
orbiting the nucleus. The latter is referred to as magnetic scattering, and it gives us
information about the magnetic order and magnetic excitations within a system. One
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Fig. 10.8 Source: website TUDelft (www.tnw.tudelft.nl, keyword sesans). Milk tastes good

because of the caseine micelles that can reach diameters of several hundreds of nanometers.

Once the SESANS probing length has reached the maximum size of these micelles, then we

do not see any further change in the signal (blue data points). When the milk is turned into

yogurt (red points), the aggregation of the micelles into larger entities is easily observed since

now the loss of polarization easily extends up to 1 µm. Turning the milk into cheese instead

(grey points) reveals subtle differences between cheese and yogurt. The faster decay of the

cheese correlation function compared to the yogurt one can be interpreted as being caused

by the more open aggregate of the micelles in cheese.

of the problems with magnetic scattering is that sometimes it is difficult to distinguish
this scattering from scattering by the nucleus. In most cases, we can employ some tricks
such as mapping out the q-dependence of the scattering, since this q-dependence is
different for the nuclear and magnetic scattering. We can employ more sophisticated
techniques, such as measuring whether the spin of the neutron is flipped during the
scattering process or not. This keeping track of the orientation of the neutron’s spin,
and its flipping, is referred to as polarized neutron scattering.

When we do polarized neutron scattering experiments, we first polarize the beam
of incoming neutrons by only selecting those neutrons that have the desired spin ori-
entation. When we detect the neutrons, we once again select neutrons of a particular
spin orientation, corresponding to neutrons that maintained their orientation during
the scattering process, or to neutrons that flipped their orientation. Polarized neutron
scattering tends to be used only when the nuclear scattering interferes so much with
our sought-after magnetic signal that we have to separate the nuclear scattering from
the magnetic scattering.

The way polarized neutron scattering works is that some magnetic excitations in-
volve a flipping of the neutron spin during the scattering process, whereas coherent
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nuclear scattering never induces a change in the orientation of the neutron spin. How-
ever, there are some situations where we are interested in the magnetic structure of
our sample for which polarized neutron scattering does not help very much. This is
the case for weak ferromagnetic order.

When we do elastic scattering by the unpaired electrons, then we will not observe
a flipping of the neutron spin. Thus, we cannot use polarized neutron scattering to
distinguish between nuclear and magnetic scattering. This is not a problem for anti-
ferromagnetic ordering since this will give rise to Bragg peaks that are forbidden for
nuclear reflections. Of course, when we are interested in this antiferromagnetic order-
ing we do not need to resort to polarized scattering in the first place, since we will
not have any problems in separating magnetic peaks from forbidden nuclear peaks
(provided we are not troubled by higher order contamination).

When we are interested in a ferromagnetic material, then we will find magnetic
Bragg peaks at the same positions (in reciprocal space) as the nuclear Bragg peaks. If
the magnetic peaks are strong enough, then we can measure the change in Bragg peak
intensities at nuclear positions to determine the strength of the magnetic signal. How-
ever, when the ferromagnetic Bragg peaks are weak, then we cannot do this separation
with enough accuracy. For this situation, we use semi-polarized neutron scattering.

The method of semi-polarized neutron scattering is based on the fact that the
magnetic scattering length, p, depends on the relative orientation of the magnetic mo-
ment (spin) of the neutron, and that of the atomic magnetic moment. The overall
strength of the magnetic scattering is determined by the magnitude of the atomic mo-
ment and by the orbitals of the unpaired electron. The sign of the interaction, being
+p or −p, is determined by whether the neutron spin and direction of magnetic mo-
ment are parallel or anti-parallel. Of course, as is the case for nuclear scattering where
the cross-section of individual nuclei is proportional to b2, the magnetic cross-section
is proportional to p2 and therefore, the sign of p does not matter for isolated moments.

When we have nuclear and magnetic scattering contributing to the same Bragg
peak, then the strength of a ferromagnetic Bragg peak will be proportional to (b+p)2,
or to (b − p)2, depending on the relative orientation of the spin of the neutron and
that of the atomic magnetic moment. In a semi-polarized neutron scattering experi-
ments, we perform two separate measurements. In the first experiment we polarize the
incoming neutron in a certain way (either up or down), and in the second experiment
we choose the opposite orientation. We do not perform any polarization analysis after
the scattering event, all scattered neutrons will be counted independent of their final
polarization. This is why the technique is called semi-polarized neutron scattering.
Next, we subtract the two experiments from each other to yield:

difference counts ∼ (b+ p)2 − (b− p)2 = 4bp.

Thus, the difference between the two experiments will be proportional to the prod-
uct of the nuclear and magnetic scattering strengths. For example, we will see a strong
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difference signal whenever the strength of the nuclear Bragg peak is strong, even when
the magnetic scattering is only weak. This allows us to study weak ferromagnetism in
the presence of strong nuclear peaks, and it is particularly useful to study the onset
of ferromagnetism when cooling the sample down through the Curie temperature. As
with the other techniques described in this chapter, these techniques are used only
sporadically and the average neutron scatterer can lead a perfectly happy life without
ever encountering the need for any of these specialized techniques.

10.4 Exercises

Exercise 10.1

What would be the reason for having a 180 degree flipper near the sample on a
spin-echo spectrometer, followed by an identical second region of magnetic field, as
opposed to doing away with the flipper, and having a region of opposite magnetic
fields?

Exercise 10.2

In SESANS experiments, one observes a rapid, initial loss of polarization as a func-
tion of spin-echo length. An example of this is shown in Fig. 10.8. What information
can be obtained from the steepness of the slope? What information can be otained
from the saturation polarization level for large spin-echo lengths?

Exercise 10.3

In our discussion on semi-polarized scattering, we simply use expressions such as
(b + p) and (b − p), whereas we are looking at an interference problem so that we

should include phase factors such as ei~q.
~Ri for atom i. What is the reason that we did

not have to worry about those phase factors in our discussion, even though we were
looking at a magnetic system?





Part III

Pre- and post-experiment

This (short) part deals with how to prepare for an experiment, how to get beam time,
how to complete a successful experiment, and how to analyze the data.
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Planning a Neutron Scattering
Experiment

As in any experiment, the best laid plans of mice and men can be thwarted by circum-
stances out of our control. However, it still pays off to think an experiment through
beforehand as opposed to just showing up with a sample to measure. The more ex-
periments one does, the more routine these experiments become. This is pretty much
obvious. This chapter can be used as a checklist that should help in avoiding some
common mistakes. Especially when one has (finally) been granted beam time at a
national user facility, it would be nice if the data were to lead to a publication rather
than to a return to take the missing data.

This chapter is written as if we are planning for an experiment at a national user
facility. We will first give some general considerations, and then we will go over two
actual examples, one in hard condensed matter, and one in soft condensed matter.

Once one has identified what one wants to learn from studying one’s sample, then
the first step is to identify the best spectrometer for performing this study. Globally
speaking, if one is interested in the structure of the material, then the choice of spec-
trometer is not as stringent as when one is interested in the dynamics of the sample.
Choosing a spectrometer at a reactor source tends to be slightly more straightforward
than choosing one at a spallation source, but in general similar considerations apply
to all cases.

11.1 Choice of Spectrometer

When one is interested in the structure of a material, the only thing to make sure of
is that the spectrometer has the desired range that allows one to determine all the
characteristics of the structure. For instance, if the structural units are large, then
the spectrometer has to be able to detect neutrons that are being scattered at a suf-
ficiently small angle so that the probing wavelength determined by the interference
pattern (Fig. 2.3) matches the size of the structural units. Typically, this range is
listed in the spectrometer characteristics as the d-space range of the instrument. By
the same token, in order to be able to accurately determine the positions of the atoms
within the structure, one needs to be able to access small d-spacings as well. As a rule
of thumb, large d-spacings are used to figure out the overall structure, such as the
size of the unit cell and the space group of the crystal, whereas smaller d-spacings are
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needed to figure out which atom sits where in the unit cell and how far they wander
from their time-averaged positions. Smaller d-spacings are probed using smaller prob-
ing wave lengths (Fig. 2.3).

It is also important to note that spectrometers that determine the structure of
materials (these spectrometers are called diffractometers) are, as a rule of thumb, the
most versatile and the most powerful at spallation sources. The main difference is
that spallation sources have diffractometers where the detectors cover a much larger
solid angle than they do at reactor sources and, therefore, experiments can be done
faster at spallation sources. In addition, at spallation sources it is much more easy
to separate out Bragg reflections that occur at angles that are close together. This is
important when one has a great many different atoms in the unit cell, such as is the
case in protein crystals. Having said that, the (standard) powder diffractometer that
can be found at most reactor sources still does the job it was designed for, namely,
determining the structure of materials that are not too complex or changes in that
structure when the system undergoes a phase transition.

When one is interested in the motion of the atoms, then the choice of spectrometer
plays a much more important role and there are many more considerations to take
into account. First of all, the dynamic range of the spectrometer has to be able to
allow one to follow the movement of the atoms corresponding to the excitations one
is interested in. In particular, it will take a certain amount of energy to start a sound
wave, and a certain amount of momentum has to be transferred before the sample can
be excited. The range of energy transfers that one is interested in largely determines
the choice of spectrometer.

Suppose one is interested in an excitation that requires 40 meV to ignite, and com-
pare this to studying an excitation that only requires 0.1 meV to get going. These two
problems will require two different spectrometers and spectrometer settings. Typically,
the spread in energies of the incident and scattered neutrons is of the order of 1%.
We somewhat discussed these numbers when we discussed the resolution function of
a spectrometer in previous chapters; in here, we will leave those details aside for a
moment.

In order to be able to transfer at least 40 meV in energy from the neutron to the
sample, the neutron needs to have at least this amount of incident energy. Therefore,
the spread in incident energies will be of the order of 0.4 meV. This is okay for studying
an excitation that requires 40 meV, but what for the 0.1 meV excitation? Clearly, the
settings of the spectrometer would not work since a spread of 0.4 meV in incident en-
ergies would completely wash out an excitation that requires on 0.1 meV to get started.

In addition, samples and the stuff that keeps the sample at the right temperature
(sample environment) always scatter neutrons without changing their energies. This is
called elastic scattering and it presents a problem when studying low lying (in energy)
excitations such as an 0.1 meV excitation. The unwanted elastic scattering tends to
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Fig. 11.1 Because of the finite resolution function of the spectrometer, the elastic scattering

(dashed-dotted curve) caused by sample holders and incoherent scattering, will be spread out

over a range of energy transfers. The characteristic energy resolution width is indicated by

the arrows. For a given amount of elastic scattering combined with a given resolution width,

inelastic excitations can either be drowned out (solid curve within the elastic scattering

contribution), or they can be well separated (the two other solid curves) from the elastic

intensity.

be quite strong, and given the spread in energies of the incident neutron, the elastic
scattering events will sometimes show up at positions that do not strictly correspond
to zero energy transfer. This is shown in Fig. 11.1 and it is called the energy resolution
function of the spectrometer. Obviously, if one wants to study excitations at 0.1 meV,
then the elastic scattering should no longer be a problem by leaking into this energy
range.

For the latter case of the low energy excitation, one would select a spectrometer
that uses incident neutrons of low energy, perhaps something like 1 meV. In this case,
the spread in incoming energies would be of the order of 0.01 meV, and they would
not interfere with an excitation that is located at 0.1 meV. (See Fig. 11.1). Neutrons
with such low incident energies (See Table 3.1) require a cold source to produce, so
one would be looking for a cold source spectrometer.

Sometimes one is not only interested in studying whether a particular excitation
exists and at what energy, but also in how long the excitation lasts for, i.e., how long
it takes to decay back to equilibrium. When studying the lifetimes of excitations, one
has to think very carefully about the spread in energies of the incident and scattered
neutron. In other words, one has to think very carefully about the energy resolution
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of the spectrometer. There is a direct relationship between the energy resolution of
a spectrometer, and the lifetime of the excitations that one can study. The better
the energy resolution, the longer (in real time) one can follow the demise of an ex-
citation that the neutron started in the material. We give some numbers in Table 11.1.

Table 11.1 Correspondence between the energy resolution of a spectrometer and the time

an excitation can be followed for.

Energy resolution [meV] characteristic time

1 0.7 ps

0.1 7 ps

0.01 70 ps

0.001 700 ps

The way to read this table is the following. If an excitation might persist for 10
ps, then one should not use an energy resolution of the order of 1 meV; with such a
resolution function one can only determine what happens during the first 1 ps of the
existence of the excitation, but is is not possible to follow the demise of the excitation
over the full 10 ps. To study (the lifetime of) such an excitation one would need an
energy resolution of 0.1 meV or better. And since typical typical energy resolutions are
of the order of 1% of the neutron energies used in a scattering experiment, one should
use incident neutrons that have energies less than about 10 meV. This would be an
experiment that could benefit from a cold source spectrometer, or from a spectrometer
setup where one uses 5 meV neutrons from a thermal source with the approximate
beryllium filters in place.

What if one wants to measure a high energy excitation (such as a 50 meV excita-
tion) with a very good energy resolution? Here one runs into fundamental limitations
of a thermal source spectrometer: in order to be able to transfer 50 meV, one will likely
end of with an energy resolution of at least 0.5 meV. One can try to improve upon this
energy resolution by using various collimators, but improvements will be very difficult
to achieve. For situations like this, one is much better off at a spallation source: at
spallation sources the energy resolution actually improves when the neutron gives up
more and more of its energy in a scattering event. An example of this is shown in
Fig. 11.2. At thermal reactor sources the opposite tends to be the case: the more of a
neutron’s energy is transferred, the worse the energy resolution becomes. This is yet
another consideration to take into account when looking for the best spectrometer to
do one’s experiment.

The bottom line is that when choosing a spectrometer one has to take into account
the dynamic range of a spectrometer (how much energy can be transferred) as well as
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Fig. 11.2 Figure reproduced with permission from M. Guillaume et al., Phys. Rev. Lett. 74,

3423 (1995) (left panel) and from M. Gutmann et al., Physica B 234-236, 812 (1997) (right

panel) with permission from Elsevier. High energy (crystal-field) excitations in SmBa2Cu3O7

(left) in Ce doped NdLaCuO4 (right) measured on the MARI spectrometer at the ISIS spal-

lation source in the United Kingdom. Note that the energy resolution at such high energy

transfers is so good that two excitations that are closely spaced together (in energy) can still

be observed as being separate excitations; they have not merged into each other because of

the (resolution function) allowed spread in transferred energies.

the energy resolution of a spectrometer (will the resolution wash out the signal, will it
allow for following of the demise of the excitation). These ranges and resolutions are
available on the websites of the instruments at national user facilities. We reproduce
such a table below for the HB3 spectrometer at the HFIR reactor at Oak Ridge na-
tional Laboratory.

Table 11.2 The instrument specifications for the HB3 spectrometer at the HFIR reactor at

Oak Ridge National Laboratory. This table has been adapted from the HB3 web pages.

component options

Monochromators Variable vertical focusing PG(002), Be(002), Si(111)

Analyzer Fixed vertical focusing PG(002), Be(101), Si(111)

Mono take-off angle 18o < 2θm < 75o

Scattering angle -90o < θ < 120o

Resolution (elastic) 5-10% of Einitial

Collimator (pre-mono) 15’, 30’, 48’

Collimator (mono-sample) 15’, 30’, 48’

Collimator (sample-anal) 20’, 40’, 60’, 80’

Collimator (anal-detector) 30’, 70’, 90’, 120’, 210’, 240’
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The way to read Table 11.2 is the following. One’s first reaction probably is: yikes,
time to call the instrument scientist. However, this table was part of the spectrometer’s
fact sheet, and it stated on the fact sheet that the spectrometer covered an incident
neutron energy range of 2-100 meV. This is a nice shortcut to having to look up the
monochromator’s lattice spacings, and combining it with the monochromator take-off
angles listed in the table to calculate the range of incident energies. Having said that,
these calculations are not that difficult, just a little time consuming.

Having either found the range of incident neutron energies in the write up, or cal-
culated from the table, then one can figure out the energy resolution. For HB3 (Table
11.2), it states that it is 5-10% of the incident neutron energy. Thus, if one choose an
incident neutron energy of 25 meV, then the energy resolution will be of the order of
1-2 meV. This is a large number, and we say that the energy resolution is not very
tight, definitely not of the order of 1% that we talked about before. This is an example
of how different spectrometers are designed differently. HB3 is designed to measure
the positions (in energy) of excitations, but not to study their lifetimes. For a lot of
systems this is good enough. For instance, in superconductors one is interested in the
excitation energies which would allow one to say something about the glue that holds
Cooper pairs together, not in whether a particular excitation takes 1 ps or 0.1 ps to
decay.

For the interested reader, HB3 uses a focusing monochromator. This greatly en-
hances the number of neutrons that hit the sample, but it increases the spread in neu-
tron energies that are allowed to be reflected out of the main beam onto the sample
by allowing for a larger spread in angles to be Bragg reflected at the monochromator.
In short, it looks like this spectrometer (HB3) is very well suited for small samples
and/or for studying weak excitations over a large dynamic range, but it would not be
one’s first or second choice for studying the separation (in energy) between two crystal
field levels (Fig. 11.2). The majority of experiments that tend to be performed on HB3
are hard condensed matter experiments such as experiments on high-temperature su-
perconductors.

Let’s compare HB3 to the SPINS spectrometer (NG5) at NIST. According to the
instrument website on the NIST web pages, the incident neutron energy can be varied
between 2.4 and 14 meV, with an energy resolution ranging from 0.02 to 1 meV. These
numbers state that when choosing an incident energy of 2.4 meV, the best resolution
possible is 0.02 meV. It should not be read as being able to have an energy resolution
of 0.02 meV using an incident energy of 14 meV (when in doubt, contact the instru-
ment scientist).

Poking around on the NIST website more, one can look up the details of the High
Flux Neutron backscattering spectrometer (NG2, details under the instrument per-
formance menu option). This instrument is designed for energy transfers of up to 50
µeV (0.05 meV) with an energy resolution of the order of 1 µeV. Clearly this is an
instrument designed to follow very slow motions that take place on timescales of up to
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1 nanosecond. The website also states that the instrument maintains a high neutron
flux despite its highly stringent energy resolution requirements. This high energy res-
olution in combination with a high neutron flux was achieved at the cost of sacrificing
the angular resolution of the instrument.

This brings us to considerations related to the angular resolution of a spectrometer.
So far we have been talking mostly about the energy resolution of a spectrometer, but
the angular resolution and angular ranges are important too. However, these consider-
ations are of secondary importance as a spectrometer that does not have the required
dynamic range will not be useful. It is only when we have narrowed down our choice
of spectrometers that we should be looking into the angular range and resolution.

The amount of momentum transferred from the neutron to the sample depends on
the scattering angle, as can be seen in Fig. 2.3. If we do not know the scattering angle
with great accuracy, we also do not know the momentum transfer with great accuracy.
This implies that during the course of an experiment we are averaging over scatter-
ing events that span a range of momentum transfers. This is similar to the averaging
that happens when the experiment spans a range of energy transfers (as dictated by
the energy resolution function of the spectrometer). So the question is, do we have to
worry about this averaging over a range of momentum transfers?

Most materials have excitation energies that depend on how much momentum is
transferred. This is called the dispersion relation of the material, and two examples
of dispersion relations are shown in Figs. 4.11 and 9.7. Looking at such a relation
(such as the sketch in Fig. 11.3), imagine that we average over a small range momen-
tum transfers because of the less than perfect angular resolution of the spectrometer.
This would imply that the energy ranges of the excitation would vary accordingly as
dictated by the slope of the dispersion curve. If the spectrometer’s energy resolution
should exceed this range, then we would not have to worry about this lack of angular
resolution; however, if we had picked an energy resolution that is much better than
this range, then we would have negated any positive effect we obtained from using
such a tight resolution with the result that we would have thrown away neutrons for
no good reason.

In other words, it is the range of excitation energies within a range of momentum
transfers that matters. This range should be less than the energy resolution. If not, we
are throwing useful neutrons away. These considerations also tell us whether we have
to worry about the angular resolution in the first place. If the dispersion does not vary
very much with momentum transfer (we call this a flat dispersion), then we do not
have to worry. Conversely, if the dispersion is very steep, then we probably should not
be using instruments such as NG2. For a typical spectrometer, the angular resolution
tends to be such that we do not have to worry; it is just for atypical spectrometers
such as NG2 that angular resolution considerations tend to become important.



206 Planning a Neutron Scattering Experiment

Fig. 11.3 The angular resolution (and the accompanying q-resolution) leads to a spread in

energies depending on the slope of the dispersion, and on which part of the dispersion is

being measured. In this sketch, the q-resolution is given by the distance between the vertical

dashed lines; the resulting spread in energies is indicated by the arrows in the figure.

However, certain dispersions are very flat as they represent the excitations associ-
ated with individual molecules, such as the rotational states of a molecule confined to
a cage formed by its neighbors. Such local excitations are not collective excitations,
and as such they do not show any dependence on scattering angle. Dependence on
scattering angle only occurs when one neighbor influences the next. Such localized
excitations are ideal for instruments like NG2. An example of such a local excitation
is shown in Fig. 11.4.

11.2 Ancillary Equipment

After the selection of spectrometer, we want to make sure that the required sample
environment is available, and that it can be used on the spectrometer we have selected.
In most cases, sample environment includes such items as cryostats, cryomagnets,
furnaces, pressure cells, and hydration chambers. Most instrument websites do not
have specific details on what piece of equipment fits the spectrometer, and which piece
of equipment is being refurbished (a.k.a. broken). Since it is always good practice to
contact the instrument scientists anyways (especially as this tends to improve the
chances of being awarded beam time), this would be a good time to discuss with the
local contact whether the desired equipment is available for use on the instrument.
Other than these generic notions, beyond checking what equipment is available in
general at the user facility, there is not much more that can be learned without actually
contacting someone.
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Fig. 11.4 Shown are the excitations resulting from a molecule tunneling from one state to

another state. These excitations do not depend very much at all on the amount of momentum

transferred between the neutron and the sample and, as such, they are ideal candidates to

be studied on specialized spectrometers such as NG2 at NIST. The data on lutidine shown

here were summed over a range of momentum transfers between 0.6 and 1.6 Å−1. Note the

scale on the horizontal axis as being micro-eV, not milli-eV. Source: NIST NG2 instrumental

website.

11.3 Performing the Experiment

The success of an experiment depends in a large part on how much the user does dur-
ing an experiment. Experiments can be hard work, and not necessarily a lot of sleep
is possible. Therefore, always make sure that there is enough manpower available, do
not count on the instrument scientist to do (all of) the hard work for you.

When doing an experiment, try to analyze the data as you take them. Not only
does this make sense because the instrument scientist will be there to help you and
make you more familiar with the analysis software, it gives you a chance to fine tune
the experiment. This implies that the experiment may well have to start with an empty
sample cell run, or some other background scan.

Be prepared that you will not be able to take your sample home with you. It might
be stuck in a cryostat, but more likely, the sample will have become radioactive and
will need to be stored for a while at the user facility before it can be shipped. You
can estimate beforehand how long it will take your sample to cool off, but these are
estimates at best. Elements in particular to be on the look out for that get radioactive
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are the ones that have a sizeable neutron absorbtion cross-section. The NIST web-
site has a feature that allows the user to input the chemical formula of the sample
and obtain an estimate of the activation of the sample. This feature can be found at
www.ncnr.nist.gov/cgi-bin/neutcalc.

One thing that tends to pay off is to do the following: ask the instrument scientist
to take a neutron picture of the sample while it is in the beam. This way, you will
learn how the sample is actually situated in the beam (is it in the middle, etc.), and
it will give you piece of mind when something odd pops up during the analysis stages.
Also, try to make sure that you have transmission data of the empty cryostat and of
the cryostat with the sample in it. There are occasions that you will need this during
the analysis, and it only takes a minute to gather these data.

Finally, sometimes stuff breaks or does not work out the way it was originally
planned. While it seems to make sense to have a back-up sample on hand, in most
cases you will not be allowed to substitute one experiment for another. This actually
makes sense as beam time for a similar experiment might already have been granted
to another user. So if something does break, do not dwell on it.

11.4 Writing a Beam Time Proposal and Examples

The stage where a beam time proposal is being written also tends to be the stage
where some issues come to light; therefore, do not postpone writing the beam time
proposal until the last second. Beam time proposals are reviewed by quite a few scien-
tists. Not all of them will be familiar with the nuances of the particular field, but they
will be familiar with the ins and outs of neutron scattering experiments. The beam
time proposal should be written so as to make the life of the reviewers easy.

Start the proposal with a one or two sentence summary of what you want to mea-
sure. Follow this by a brief background of the field, by what the open questions are
that you hope to resolve, and why resolving them is important. Then explain the ex-
perimental procedures. This step is quite frequently added as an afterthought, but it
tells the reviewer that you have given the experiment the necessary amount of thought
and it makes it easier for the reviewer to judge whether the requested amount of beam
time is correct and adequate.

The experimental procedure should make clear that time has been reserved for
completing not just the data taking part, but also for completing background scans
(such as empty sample holder, reference data at a temperature above that of a certain
phase transition, etc.) and for cooling down samples, changing samples, and so forth.
Ideally, the requested time also deals with measuring the resolution function of the
spectrometer, when needed and when not known. In short, make sure the reviewer can
follow the plan of action and that it leaves no doubt that all the data for a successful
publication will be taken.
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The following are two examples of beam time proposals. The first one was put in to
Oak Ridge National Laboratory for a hard condensed matter experiment; the second
one was put in to NIST for a soft condensed matter experiment. We have blocked
out the names of the applicants. Both proposals were granted beam time, but their
ranking by the reviewers is unknown.
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NIST Center for Neutron Research
Proposal for Neutron Beam Experiment

Submission ID:17273         Proposal Number: null

Experiment Title
Title: Studies of Model Membranes
Proposal Type: New Proposal
Time Received: 04-OCT-11 23:46

Scheduling
Desired Dates: 06/22/2012 to 07/31/2012
Impossible Dates: 03/01/2012 to 06/21/2012
Estimated Duration: 8 days

Participants

Name Address Country Telephone/e-mail
Principal
Investigator

Taub, Haskell University of Missouri - Columbia
Department of Physics and Astronomy and
University of Missouri Research Reactor
223 Physics Building UMC
Columbia, MO
65211

United States taubh@missouri.edu

User 2 Miskowiec, Andrew University of Missouri - Columbia
Department of Physics and Astronomy and
University of Missouri Research Reactor
223 Physics Building UMC
Columbia, MO
65211

United States amyrd@mizzou.edu

User 3 Neumann, Dan National Institute of Standards and
Technology
NIST Center for Neutron Research
100 Bureau Drive,  MS6102
Gaithersburg, MD
20899-6102

United States dan@nist.gov

User 4 Tyagi, Madhu Sudan University of Maryland at College Park
Department of Chemical and Nuclear
Engineering
Chemcial and Nuclear Engineering
College Park, MD
20742

United States mtyagi@nist.gov

User 5 Brown, Mia University of Missouri - Columbia
N/A
Columbia, MO
65211

United States mcbq48@mail.missouri.edu

User 6 Jiji, Renee University of Missouri - Columbia
N/A
Columbia, MO
65211

United States jijir@missouri.edu
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Instrument

Sample Description

Sample Environment

Sample Environment Equipment: CCR; 30-600K

Special Requirements
Please describe any non-routine needs for sample temperature, magnetic field, etc., or other
ancillary equipment. Specify any equipment needed at NIST for sample loading, treatment,
storage, etc. (inert atmosphere, refrigeration, dry box, etc.). Also describe any equipment you plan
to bring to NIST.

Instrument Requested: NG-2 -- HFBS, High-flux backscattering spectrometer (CHRNS)
Suggested Local Contact: Madhu Sudan Tyagi
Instrument Resolution: 1 microeV
Instrument Configuration: Default instrument configuration

Sample 1
Name DLPG:  1,2-dilauroyl-sn-glycero-3-phospho-(1'-rac-glycerol)

(sodium salt)
Chemical Formula C30H58O10PNa + H2O (low hydration)
Mass (grams) 2 mg + 117 g Si
Form Amorphous Solid
Temperature Measurement Range (K) 250 - 400 K
Number of Runs 8
Total Collection Time (hrs) 96
Sample Availability 2012-03-01 00:00:00.0

Sample 2
Name DLPG:  1,2-dilauroyl-sn-glycero-3-phospho-(1'-rac-glycerol)

(sodium salt)
Chemical Formula C30H58O10PNa + D2O (high hydration)
Mass (grams) 2 mg + 117 g Si
Form Amorphous Solid
Temperature Measurement Range (K) 250 - 400 K
Number of Runs 8
Total Collection Time (hrs) 96
Sample Availability 2012-03-01 00:00:00.0
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Safety
Check at least one box that describes your sample
[X] No Hazards
[] Toxic [] Corrosive [] Radioactive [] Explosive [] Flammable 
If there are any hazards associated with your proposed experiment, please indicate how any risks
are to be handled.

Categorization
For reporting purposes, please categorize your proposal:

Publications
(If you have been allocated beam time through proposals to the NCNR during the past three years, please
list the instrument and resulting publications)
HFBS:
"Study of the Dynamics of on Single-supported Bilayer Lipid Membranes by Quasielastic Neutron
Scattering," M. Bai, A. Miskowiec, F. Y. Hansen, H. Taub, T. Jenkins, M. Tyagi, D. A. Neumann, S.
O. Diallo, E. Mamontov, K. W. Herwig, S.-K. Wang, submitted to Europhys. Lett.

Description of Proposed Research
(Please include scientific context; relevance of proposed experiment; preliminary work performed using
neutron scattering and other techniques; details of proposed experimental approach; appropriate
references.)

This work is a critical part of the graduate thesis of: Andrew Miskowiec

Research Area: Biomolecular Science
Funding Agency: NSF National Science Foundation
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Fig. 1.  Sketch of a hydrated single-
supported bilayer lipid membrane as 
suggested by Ref. 4. 

Scientific background: 
Membrane proteins represent a significant frontier in 
structural biology – they are ubiquitous in nature and are 
notoriously difficult to study with traditional techniques [1].
Therefore, the structure and dynamics of nearby water 
molecules and their impact on the function of membrane-
embedded proteins remains one of the most fundamental 
problems in biological physics today. 

The experiments described in this proposal will investigate 
the diffusion of water in proximity to a single-supported 
DLPG (C30H58O10PNa) membrane.  In contrast to DMPC 
that we have studied previously, DLPG has a net negative 
charge that facilitates protein insertion.  Our principal aim 
is to compare the dynamics of water on this charged 
membrane with that which we have found for water associated with the electrically neutral 
DMPC membrane. 

In a second experiment (see Proposal #17423), we will investigate the effect on the diffusion of 
the membrane-associated water caused by a low concentration of the protein Cytochrome c
residing on the DLPG membrane.  Cytochrome c (Cyt c) is an electron shuttling protein that 
accepts and donates electrons from and to the bioenergetic integral membrane proteins found in 
the inner membrane of mitochondria and bacteria.  On the surface of charged lipid membranes, it 
undergoes an ordered-to-fluid globule structural transition, thereby influencing its native role in 
soluble electron transport chains.  Thus, understanding how the solvation of a membrane’s 
surface is influenced by or influences the protein-lipid head group interactions is an important 
biological question. 

Aims of the proposed experiment: 
Recently, we have demonstrated the use of high-energy-resolution quasielastic neutron scattering 
to investigate the diffusive motion of water and of the lipid molecules in single DMPC 

membranes supported on a solid substrate [2,3] as 
depicted in Fig. 1 [4].  We propose now to extend these 
experiments by investigating the interaction of water 
with single-supported DLPG membranes.  As shown in 
Fig. 2, the DLPG molecule contains two aliphatic chains 
of 12 carbons compared with the 18-carbon chains in 
DMPC.  The head group differs from that in DMPC 
membranes by not having an amino group attached to 
the phosphate group.  By protonation, the phosphate 
group can be made electrically neutral as in the choline 
head group of DMPC; and, by deprotonation, it can be 
electrically charged.  Thus, we have the interesting 
possibility of studying the effect of the head group’s 
electric charge on the water dynamics in the membranes. 

Preliminary work: 
During May and October 2010, we performed measurements with the backscattering 
spectrometer BASIS at the Spallation Neutron Source on a single-supported protonated DMPC 
membrane (C36H72NO8P) hydrated with H2O in order to be sensitive to the diffusive motion of 
both the water and the lipid molecules. The membrane was deposited on a SiO2-coated Si(100) 
substrate with an amount of water sufficient to hydrate the membrane fully.  A total of 100 
wafers of diameter 50 mm filled the neutron beam and were oriented with the wave-vector 
transfer Q parallel to the wafer surface (see Fig. 1) [5]. One-hour spectra were obtained at 0.5 K 
increments in the temperature range from 250 K to 315 K.  In order to verify sample quality and 
locate possible water freezing transitions, we plotted the elastic intensity summed over all Q vs. 

Fig. 2.  (a) Schematic diagram of the 
DLPG; and (b) 3D model.
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temperature as shown in Fig. 3(a).  The sharp vertical step at 267 K indicates a homogeneous 
sample and that the equilibration of the wafer stack. 

We fit the BASIS spectra by folding the instrumental resolution function with a scattering law 
composed of three terms:  a delta function representing the elastic scattering plus two 
Lorentzians [5].  Utilizing the combination of energy resolution and dynamic range of BASIS, 
we could resolve two diffusive processes occurring at different rates:  a “fast” motion (time scale 
< ~40 ps) that can be fit to a broad Lorentzian and a “slow” motion (time scale ~ 0.5 ns) 
described by a narrower and weaker Lorentzian.  The full-width-at-half-maximum (FWHM) of 
the broad Lorentzian has a Q2 dependence at low Q (not shown) characteristic of translational 
diffusion of the H2O molecules.  We tentatively identified the slower motion corresponding to a 
FWHM ~ 5 eV that is nearly Q-independent (not shown) with conformational changes of the 
alkyl tails of the lipid molecules.  We have identified similar motion in solid bulk alkane 
particles [5] and in monolayer alkane films [6,7]. 

The temperature dependence of the broad Lorentzian 
intensity is shown in Fig. 3(b).  We see that it has a step-like 
decrease on cooling that coincides with the step-like increase 
in elastic intensity at 267 K, which is consistent with about 
2/3 of the H2O sample becoming immobile on a nanosecond 
time scale.  In contrast, the intensity of the narrow Lorentzian 
in Fig. 3(c), attributed to conformational changes of the lipid 
tails, has only a weak temperature dependence.  The solid 
and open data points correspond to samples hydrated with 
H2O and D2O, respectively. 

Proposed measurements: 
We request 8 days of beam time on the HFBS to measure 
elastic scans on two samples of single-supported DLPG 
membranes:  one at a high level of hydration as in Fig. 3 and 
one at a factor of 10 lower level of hydration [3].  From our 
previous measurements on single-supported DMPC 
membranes [5], we have a good estimate of the measurement 
time for each sample; i.e., 4 days to perform 3 to 4 
heating/cooling cycles at a slow ramp rate of 0.04 K/min. 

Of particular interest will be to determine whether there is a 
sharp, step-like freezing transition for the high-hydration 
sample on the charged DLPG membrane as is the case for 
DMPC as shown in Fig. 3(a).  Due to stronger water/head 
group interactions for DLPG, we might expect a further 
suppression of the water freezing transition below 267 K.  In 
the case of the DMPC, the membrane of lower hydration did not show a step-like decrease in 
elastic intensity on cooling.  Instead, beginning at 267 K, there was a continuous and monotonic 
decrease in the elastic intensity.  Perhaps with the stronger water/head group interactions for 
DLPG, there will now be a step-like freezing transition as in the case of DMPC at high 
hydration.

These studies of the water freezing transition for pure single-supported DLPG membranes 
conducted on the HFBS should establish the feasibility of further measurements of the full 
quasielastic spectra on BASIS as we have done for DMPC.  In addition, these experiments with 
membrane-associated water on the bare DPLG membranes are an important prerequisite for 
studies of the effect of the protein Cyt c on the water dynamics as discussed in the introduction 
and in Proposal #17423. 
 
 

Fig. 3.  Normalized intensity of the 
three components of the quasielastic 
spectra from a well-hydrated single-
supported DMPC membrane:  (a) 
elastic; (b) broad Lorentzian; and (c) 
narrow Lorentzian.
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12

Data Correction and Analysis

The data analysis and interpretation of an experiment can be involved, or it can be
straightforward. If we are looking for the existence of some effect, the analysis will
likely be easy. If we are looking for something subtle that involves line shape analysis,
then we are in for it. This chapter serves as a general guide on what to do to get the
most out of the data, but it cannot cover every possible experiment.

There are some standard steps in correcting the data of an experiment:

• remove all the scattering that does not come from the sample,

• remove all the scattering from the sample that is unwanted (e.g., incoherent scat-
tering, multiple scattering),

• correct the scattering for effects that changed the intensity of the signal (e.g.,
attenuation, monitor contamination).

.
At the completion of the data correction procedures we have the signal that we

are after, ready for us to fit our model to and interpret what we see. There are some
potential pitfalls in this step that largely fall into two categories:

• fitting the model to the wrong (scattering) function,

• restricting the model too much (or too little) with the result that we get a good
fit to an unphysical model.

Both these mistakes are surprisingly common so, be warned, they might sneak up on
you.

12.1 Data Correction

There are quite a few steps in the data correction procedure, depending on what type
of experiment one is doing. It is good practice to do the correction steps one by one,
and to look at the ensuing results before undertaking the next correction step. In par-
ticular, start by ignoring all correction steps, and look at the raw data as if they are
the final product. This already gives a good indication of how accurately one has to
perform the data correction steps, or whether some of them can be ignored altogether.

The first step in our data correction procedure is to get rid off the background
scattering. With background scattering we mean neutrons that end up in the detector
and that did not come from our sample. They could have come from the spectrometer
next door, from the cryostat, from the sample holder, from air scattering, or from the
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Fig. 12.1 The basic steps in correcting neutron scattering data. The blue boxes denote the

experiments, the red boxes the steps in data reduction. When a box is more lightly colored,

then these steps are not necessarily required, depending on the type of experiment.

straight through beam. A pretty good way of correcting for this scattering is by doing
a separate run (experiment) where everything is measured in the same way, but the
sample has been removed from the sample holder. It is pretty good, not perfect.

It is pretty good because we can think of the scattering- when the sample is in
place- as being made up of:

total scattering = sample scattering + sample environment scattering
+ time-independent scattering.

With time-independent scattering we mean the neutrons that come from next door
and air scattering. Hence, when we remove the sample we can expect the scattering
to be given by:

total scattering= sample environment scattering + time-independent scattering.

Subtract the two measurements from each other, and what remains is the scattering
by the sample. However, this is not entirely correct.

It is not entirely correct because the sample changes how many neutrons will hit
what parts of the cryostat, and even how many neutrons are left in the straight through
beam that will give rise to air scattering. With the sample in place, the back of the
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sample environment will be in the shadow of the sample. Since the sample scatterers
some 10 % of the neutrons out of the beam, the back of the cryostat will generate
fewer scattering events with the sample in place than without the sample in place.
In addition, the sample will scatter neutrons that in turn can scatter off of the cryo-
stat and sample holder in ways that are not possible without the sample in place. For
these reasons this straightforward correction procedure is not perfect, it over subtracts.

Under what circumstances is this subtraction procedure good enough? Mostly when
we have a sample that only scatters very weakly, that does not absorb many neutrons,
and when the signal we are interested in is pretty strong. Conversely, the procedure
does not work well when we have weak signals or strongly scattering and absorbing
samples. It is up to the user to be aware of this, to not simply do this straightforward
subtraction and no longer think about it. For instance, when ending up with negative
intensities after the correction procedure it is a sure sign of having subtracted too
much background scattering.

What to do when this procedure is not good enough? We can use sophisticated
computer programs for the case of liquids, and we can do even better for the case of
magnetic systems. We will elaborate upon this a bit because it is probably time for
a figure. Shown in Fig. 12.2 are the raw data that led to the magnetic peaks that we
displayed in Fig. 5.5.

In this experiment, the aim was to measure some very weak peaks in the presence
of a lot of unwanted scattering, namely cryostat scattering, air scattering, nuclear in-
coherent, and nuclear coherent scattering. A sample subtraction procedure between
the two experiments with sample in the cryostat and with the sample removed would
not have worked in view of the weakness of the signal. In order to measure this weak
signal in this case the following experiments were performed. Instead of carrying out a
background experiment with the sample removed, the sample was left in but its tem-
perature was raised from 2 K to 56 K. The latter temperature is above the magnetic
ordering temperature so that the scattering will contain all nuclear scattering (coher-
ent and incoherent), cryostat scattering and air scattering, but no magnetic scattering.
Subtracting the higher temperature from the low temperature data leaves purely the
magnetic scattering.

The above procedure is almost perfect in getting rid off unwanted scattering. All
the cryostat and air scattering is exactly subtracted since we left the sample in place,
and all the nuclear coherent and incoherent scattering is subtracted almost perfectly.
”Almost” in this case, refers to the fact that the crystal will have contracted a little
bit between 56 K and 2 K so that the nuclear Bragg peaks will have shifted a little
bit. This effect caused the gaps in scattering at (112) and (114) shown in Fig. 5.5.
In addition, the incoherent scattering might show a very small amount of tempera-
ture dependence, but that amount was negligible here. Finally, we can expect some
multiphonon scattering at 56 K caused by phonons present in the crystal scattering
neutrons, phonons that are no longer present at 2 K because of lack of thermal energy.
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Fig. 12.2 The notation is the same as in Fig. 5.5. The top panel shows the change in

scattering between 56 K (solid line) and 2 K (points). This change is entirely due to the onset

of magnetic correlations. Subtracting the two data sets yields the peaks shown in Fig. 5.5.

The vertical arrows are the positions of maximum difference between the two temperatures.

The bottom panel displays the same two temperatures, but now for momentum transfers that

are purely along the crystallographic c-axis. We observe no difference, and hence, we must

conclude that the magnetic moments are pointing along the c-axis.

But over all, the subtraction is essentially perfect, as demonstrated in Fig. 5.5.

The procedure outlined above can be applied whenever we want to measure a
signal that is absent at a different temperature, or different magnetic field, etc. Or,
we can apply it to biological samples using contrast matching techniques to set up a
background experiment. Or, we can rotate a single crystal sample away from a Bragg
reflection, leaving the same amount of incoherent scattering. The bottom line is that if
it is possible at all to measure the background (unwanted) scattering with the sample
in place, then this will result in much more accurate data.
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When it is not possible to set up a background measurement with the sample in
place, and we are after highly accurate scattering data, then only models will help.
An example of this can be an experiment on a supercritical liquid, such as argon at
high pressure. What needs to be done in this case in order to obtain an accurate back-
ground subtraction is to measure the sample in its pressure cell, to measure the empty
pressure cell, followed by using a computer program that has as input the way argon
scatters. The computer program can then figure out, to some extent, how much the
presence of the sample attenuated the scattering of the empty pressure cell. People
have even improved upon this by filling the cell (during the background measurement)
with an amount of helium-3 gas that absorbs just as many neutrons as the argon would
scatter out of the beam.

In summary, the correction for unwanted scattering requires thinking before per-
forming the experiment. One needs to have a pretty decent idea of how accurate the
background correction needs to be done in order to be able to see and analyze the
sought-after signal. At this point, look at the results of the subtraction procedure. If
the signal that one is interested in is not recognizable, then skip all following correction
steps and redesign and redo the experiment. All following steps ensure that the data
are corrected for, but they will not create data where there are none.

The next step- now that we have the scattering intensity that comes from our
sample and not from the cryostat, air scattering, or (in some cases) from scattering
events within the sample that we are not interested in- is to make sure that our counts
are what they should be. In this step we have to correct for monitor contamination
(if present), we have to make sure that all of our detectors (if we have multiple) are
counting just as efficiently, and we have to make sure that the detectors count the slow
and the faster neutrons just as efficiently.

We can expect to have to perform a monitor correction if we are doing an inelastic
3-axis experiment with fixed final neutron energy. This was detailed in section 9.2.4. If
a monitor correction is not available (that means, if it has not already been measured),
then measure it by doing a set of tin-foil experiments, by measuring the scattering of
a liquid for both energy gain and energy loss so that the monitor correction can be
inferred form the detailed balance condition, or use a model based upon the incident
neutron flux. Unless the correction is already known, none of these options sounds
very attractive and the first course of action can be to ignore this correction. However,
if we are interested in the line shape (as a function of energy transfer) of a particular
peak, then at one point we will have to do this correction. In figure 12.3, we show the
difference in line shape before and after the correction on TRIAX.

When using a 3-axis machine operating with fixed incident energy (so we do not
have to worry about the monitor correction), then this would be a good time to di-
vide the data with the kfinal/kinitial factor to get rid off this factor by hand (eqn 4.1),
since our incident beam monitor does not take care of it when we use a fixed incident
neutron energy.
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Fig. 12.3 The scattered intensity (circles plus error bars) for supercooled Ga at 293 K for q=

2.52 Å−1 as measured at a thermal source triple-axis spectrometer (TRIAX). This particular

q-value corresponds to the peak in the static structure factor. Applying the measured monitor

correction leads to a substantial change in line shape (stars), illustrating the need to account

for this correction before modeling the line shapes.

Should our instrument have multiple detectors, then it is unlikely that all detectors
have an identical detection efficiency. We can actually measure this relative detector
efficiency by sticking a purely incoherent scatterer in the beam, such as a rod of vana-
dium. All detectors should have an identical count rate since the scattering power of
vanadium does not depend on scattering angle. We simply measure the count rate for
each detector, and then we divide our measured signal (sample minus background) by
this count rate. This is an easy correction, as long as we made sure that we actually
performed this very quick vanadium measurement during our experiments.

Detectors are more efficient at counting slow neutrons than they are at fast neu-
trons. Therefore, a faster neutron is more likely to make it through the detector and
not be counted than a slow neutron. If this is a sizeable effect, then we have to correct
for it. We can do this correction either by measuring it, or by modeling it. However,
in most cases there is no need to do this correction.

We will only need to perform this correction when we are doing inelastic experi-
ments and the final energy of the neutron is not fixed. On top of that, we only need to
do this correction when we are looking at very high energy transfers, something which
we do not frequently encounter at thermal reactor sources. The correction itself can
easily be measured by performing a vanadium experiment where we look at neutrons
that are scattered elastically while we vary the energy of the neutrons we use for this
elastic experiment.
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Fig. 12.4 Panel (a) shows a scattering event where the neutron travels a distance Lin be-

fore scattering, and a distance Lout after scattering. The scattered signal will be attenuated

because the sample (shown in blue) will absorb the neutron, or will scatter the neutron be-

fore it reaches the scattering point, or before it exists the sample. Panel (b) shows multiple

possibilities for the source of the scattering event. When correcting, we have to sum over all

possibilities along the dotted line, and then translate the dotted line to the left and right of

the incoming neutron until the entire sample has been modeled. Panel (c) shows how we can

do similar ray tracing for samples of all shapes, such as the annulus depicted here.

Modeling this correction is not too terribly hard to do. We can simply do a calcu-
lation based on the amount of helium-3 gas in the detector, the shape of the detector
and the energy of the neutron to be detected. Note that this correction might be more
important when using smaller detectors, such as the 1/2” pencil detectors used on
TRIAX.

The next step of our correction procedure involves correcting for (self-)attenuation.
This is the effect that the front of the sample receives more neutrons than the back of
the sample by virtue of absorbing some neutrons and scattering some away. In addi-
tion, neutrons that try to make it out of the sample on their way to the detector can
be absorbed by the sample, or scattered once more, before they get to the detector.
The importance of this correction depends on how good a scatterer the sample is, on
its shape, and on how many neutrons the sample absorbs.

The good news about this correction is that it can be calculated exactly (Appendix
I), so there is no reason not to perform this correction. The correction will be of least
importance for cylindrical, weakly absorbing samples, and it will be most important
for slab-geometry samples that are strongly absorbing. In order to calculate this cor-
rection, we only need to know the average scattering and absorbtion power of the
sample, and its dimensions.

The details of how to calculate this correction were worked out by Varley Sears, but
the essence is that we need a computer program to do ray tracing. We show the basics
in Fig. 12.4. We assume a scattered neutron has been detected having been scattered
over a certain scattering angle. We want to figure out how many neutrons were not
detected at this scattering angle because something happened to them on the way
to the scattering event, or after it. In the scattering event depicted in Fig. 12.4, the
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neutron traveled a distance Lin to the scattering event, and a distance Lout after the
scattering event before it made it out of the sample. Denoting the average scattering
and absorbtion cross-section by σ (details to follow), and the average number density
of scattering centers by n, we find (see also Chapter 3) that the number of neutrons
that were scattered along this path are down by a factor W :

W = e−Linnσe−Loutnσ.

Thus, had the sample not had any scattering or absorbing power, we would have
counted more neutrons being scattered along this path. To be precise, we would have
measured 1/W more. Other points of scattering in the sample will change the respec-
tive values for Lin and Lout and, therefore, the value of W . Then, in order to perform
this scattering, we simply calculate this factor W for all possible points of scattering
anywhere in the sample, and we divide our measured signal by this factor, properly
averaged over all points of scattering. Appendix I shows some examples that were
calculated by doing numerical integrations using a computer.

When we are using a computer, we can also take into account the fact that the
likelihood of absorbtion depends on the speed of the neutron. This is a straightforward
modification. We simply make the value σ dependent on the energy of the neutron:
σ(E) = σcoh +σinc +σabs(E). Thus, we use the following energy dependent correction
factor

W (Ein, Eout) = e−Linnσ(Ein)e−Loutnσ(Eout).

Once we have these attenuation programs, we can actually use them for more
purposes. We can use them to correct (after the facts) our empty sample holder ex-
periment to pretend there is a sample in it. Rather than dividing by the factor W ,
we would multiply our empty sample holder experiment by it. We can also use such
programs to calculate the transmission of a sample, and compare it to our measured
transmission. The latter we do when we try to put the scattering of our sample onto
an absolute scale, a topic not detailed in this booklet.

The last two corrections we need to consider are multiple scattering and multi-
phonon corrections. Despite their name, the two are very different entities. We try
to sketch this in Fig. 12.5. Multiple scattering events are events where the neutron
scatters more than once within the sample, whereas multi-phonon events are events
where the neutron scatters only once, but it creates multiple excitations when it does
scatter. Or, it absorbs an already existing excitations and creates a new one. Hence,
multi-phonon events are a true part of the double differential cross-section and of the
dynamic structure factor, whereas multiple scattering events are not part of the dy-
namic structure factor; they merely show up in the double differential cross-section as
unwanted scattering events.

Multiple scattering events are nasty. In liquids and amorphous materials, they
show up as a broad (in energy) background that does not display a lot of angular
dependence. In single crystals multiple scattering events can show up as sharp peaks
mimicking magnetic Bragg peaks, or they can manifest themselves as a reduction in
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Fig. 12.5 When a particle with incident wave vector ~ki (arrow) gets scattered by a sample

it can create an excitation of momentum ~q (dotted line, part a), or it can excite multiple

disturbances (part b). The latter is referred to as the multi-phonon component. A particle

can also undergo multiple scattering events before exiting the sample (part c), a process

referred to as multiple scattering.

scattered intensity of a Bragg peak. In liquids we can do a very good job of correcting
for multiple scattering, provided the level of multiple scattering is not too high. In
solids we cannot correct, but as a rule of thumb, we do not have to anyways.

The way to correct for multiple scattering in liquids is by number crunching. The
procedure is similar to how we correct for attenuation effects, but now at every point
of scattering we allow the neutron to scatter in any direction, transferring any amount
of energy. We weigh each of these many possibilities with the dynamic structure fac-
tor, which gives us the likelihood that a neutron would actually transfer that much
momentum and energy. Then we follow the neutron on its way out of the sample, but
we force the neutron to scatter a second time. This second scattering event is such that
the neutron will make it to the detector, and it will transfer just the right amount of
energy to the sample so that when we detect the neutron, it looks just like a neutron
who scattered only once. Then we tell the computer to sum over all possibilities. This
is sketched in Fig. 12.6.

This multiple scattering procedure for liquids is actually very easy to do on com-
puters, the only drawback is that we already need to know what the dynamic structure
factor looks like, the very entity that we are trying to determine. Luckily, since these
types of calculations do not require exact matches for the dynamic structure factor, we
can get away with approximate models. By and large, multiple scattering corrections
in liquids can be performed; they are just a bit time consuming in the sense that the
computer needs very specific instructions (sample shape and dynamic structure factor)
for how to calculate them.

Multiple scattering events in solids cannot be corrected for. This is because they
will involve Bragg scattering, and Bragg scattering is simply too strong. The only
thing that can be done is to avoid having to deal with it in the first place. Should
multiple scattering occur and it stands in the way of obtaining the data, then the best
bet is to repeat the experiment, but now with a different incident wave length of the
neutron. The biggest danger in multiple scattering in solids is that these events do
have a strong angular dependence, and they can even look like a genuine magnetic
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Fig. 12.6 Some of the potential paths that a particle can take when it is scattered by the

sample. At every scattering event we have conservation of momentum and energy. The left

panel depicts a neutron with incoming momentum h̄~ki that is scattered exactly once by the

sample, somewhere along its path L0. The length of the path Lf that the scattered particle

has to travel before exiting the sample with momentum h̄~kf depends on where it scattered

initially. The other panels on the right sketch how we can decompose events where the particle

is scattered twice. In these double scattering events, the neutron exits the sample with the

same momentum vector as in single scattering. The computer now has to sum (integrate)

over all possible intermediate scattering events, all weighed by the dynamic structure factor.

Bragg peak. More on this is in the section on spurions in this chapter.

The last correction we look at in this section is the multi-phonon correction. This is
an effect that we only need to worry about under special circumstances, namely when
we are trying to measure close to a Bragg peak, or when we are interested in the den-
sity of states. Multi-phonon corrections are only relevant to crystals. Multi-phonon
scattering takes place when the neutron creates two excitations simultaneously, or
when it absorbs an existing excitation while creating another. The cross-section for
the latter is highly temperature dependent, since the number of existing excitations
present in a material is given by the temperature of the material.

When we are measuring the density of states, then we can correct for multi-phonon
effects according to the equations given by Lovesey. We will not give any details here
other than the mention that standard software can deal with it rather easily. When we
are dealing with multi-phonon effects around Bragg peaks, then the take-home message
is less helpful: it is very difficult to correct for it. This is not as bad as it sounds though;
as long as we are aware of its existence, we can work around it. The most difficult
part is identifying its presence, something we do by varying the temperature of our
sample. Once we have isolated, or identified, the multi-phonon component, then we
can (somewhat) model its temperature dependence. Sometimes we can work around
it when we are interested in magnetic scattering. We can take an iso-structural, non-
magnetic sample and use that as part of our background experiments. But again, this
is a procedure far too detailed for this booklet where we merely preach awareness of
this component.

12.2 Spurions

Before we look into how to analyze our (fully corrected) data, let’s make sure that what
we call our data actually are what we want, and not some spurious effect masquerading
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as a new discovery. We already showed the source of a spurious peak in Fig. 9.8. We
will look at some more of these spurious effects in no particular order. We recommend
the chapter on spurions in the book by Shirane, Shapiro and Tranquada for a more
detailed discussion.

12.2.1 A New Excitation Below 4 K

When doing temperature dependent experiments at low temperature, it is possible to
see an excitation appear below 4 K. The excitation looks like it is part of the sample
scattering because it disappears as soon as we raise the temperature of the sample.
It even displays a dependence on scattering angle, and it becomes better defined the
more we lower the temperature. The strange thing is that its angular dependence does
not seem to match a natural length scale in our sample.

More likely than not is that the cryostat is malfunctioning. Especially orange
cryostats are susceptible to this. To cool down the sample, cold helium gas is pumped
out through a needle valve. Sometimes the rate at which helium goes through this valve
is so high that liquid helium will condense at the bottom of the cryostat, and slowly
fill the space around the sample. This helium liquid will be around 4 K (the boiling
point of helium is 4.2 K), and it can scatter neutrons quite well. It disappears as soon
as we raise the temperature above 4.2 K and we let the condensed helium boil off. This
helium scattering will be strongest for momentum transfers around q = 1.9− 2.0Å−1.
To get rid off this effect, do not open the needle valve as much.

The user should also be on the lookout for air scattering, or scattering by any gas
that is used to increase the thermal conductivity of one’s sample. In particular, there
can be a sharp reduction in background when the sample is cooled below 65 K and
N2 freezes out. A nice example is shown by Shirane, Shapiro and Tranquada in Fig.
6.10 of their book ’Neutron Scattering with a Triple-Axis Spectrometer’.

12.2.2 A New Excitation At 41 meV

Picture the following experimental setup on a 3-axis spectrometer. The spectrometer
is run with variable incident energy, and the final energy is set to Efinal= 13.7 meV.
With this choice of final energy, we can use a graphite filter to get rid off unwanted
higher order contamination (see Fig. 9.15), and we have put a 1” PG filter in the scat-
tered beam. We are looking for weak excitations in a high-temperature superconductor
where a (pseudo)-gap opens up around 41 meV. After counting for long times, we do
indeed find this excitation at 41 meV but, strangely enough, we even see its presence
above the superconducting transition temperature in the form of increased scattered
intensity at 41 meV.

The problem with the above setup is that the graphite filters used were not suf-
ficient. Even when the filter cuts out 99% of unwanted higher order neutrons, our
inelastic peak is likely to be contaminated with elastic scattering. This is what is
going on. In order to get to an energy transfer of 41 meV, we use an incoming neu-
tron energy of 54.7 meV. Some of these neutrons will scatter elastically at the sample
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through the incoherent cross section of the sample, or perhaps in the wall of the sample
holder. The analyzer happily accepts those neutrons, since 54.7 meV corresponds to
4 x 13.7 meV. This is, of course, the energy corresponding λ/2 neutrons, the second
order contamination that the analyzer allows. So we are relying entirely on the filter
to remove this bunch of elastically scattered neutrons. Even 1% of these elastically
scattered neutrons can still represent a strong signal, especially when compared to
some weak high energy excitation. So we need to add more filters to reduce this 1%
seep-through rate.

In general, we can expect this type of spurions to occur whenever the second (or
third) order contamination allowed by the analyzer corresponds to the energy of the
incoming neutrons, provided we are measuring at fixed final energy. When we measure
using fixed incident energy, similar reasoning applies. Obviously, this type of spurion
is restricted to inelastic scattering experiments.

Another type of 3-axis spurion has been discussed by Currat and Axe, and it is
referred to as accidental Bragg scattering. We refer to the tome on 3-axis spectrome-
try by Shirane, Shapiro and Tranquada for all the details. Accidental Bragg scattering
happens when, during the course of an inelastic scattering experiment, the sample has
been rotated in such a way that elastic Bragg reflection is allowed to occur, and an
intense beam of neutrons is sent down to the analyzer. The graphite filter (or any other
filter that is in place) might stop most of them, but this beam is so intense that quite
a few make it to the analyzer. The analyzer will not Bragg reflect these neutrons, since
their wave length is not the right wavelength to be Bragg reflected into the detector.
However, the analyzer is at room temperature, and has quite a few phonons present in
it. Additionally, the analyzer can have an incoherent cross-section. The result is that
a small fraction of these neutrons impingent on the analyzer will be scattered in all
directions, including the detector. It will give rise to only a weak signal in the detec-
tor, but this signal can still be substantial compared to the excitation we are studying.

This accidental Bragg scattering peak is a nasty spurion, and the spurions are
recognizable by a dispersion that does not follow the symmetry of the sample crystal.
They are not easy to recognize as spurions, but some spectrometers have software
running on them that may help the user identify such spurions, or at least warn the
user to be on the lookout for them.

12.2.3 The Magnetic Moments Are Canted Away From a High
Symmetry Direction

Most magnetic systems- that is, systems where the magnetic moments line up parallel
or anti-parallel with their neighbors below a certain temperature- harbor magnetic
moments that line up along a particular axis (the easy axis), or they lie within a plane
(the easy plane). Neutron scattering is very well suited at figuring out the direction of
the magnetic moments, because the magnetic cross-section is present only when the
magnetic moment direction and the direction of momentum transfer are not parallel
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to each other.

An example of this sensitivity of the cross-section to the direction of momentum
transfer is shown in the bottom panel of Fig. 12.2. In this panel, we observe a total
lack of magnetic scattering because the direction of momentum transfer is exactly
parallel to the orientation of the magnetic moments, in contrast to the top panel of
this figure where the momentum transfer vector has a component perpendicular to the
orientation of the magnetic moments.

Suppose the magnetic moments would have been tilted away slightly from the easy
direction. In this case, we would have gotten a small amount of magnetic scattering
in the bottom panel of Fig. 12.2. If we are in a situation where we have sharp Bragg
peaks (unlike the example in Fig. 12.2 where we only had short-range order), then
slight tilting (or canting) would give rise to very weak Bragg peaks along directions
that would otherwise be forbidden. When comparing the intensity of such weak and
forbidden Bragg peaks to other Bragg peaks, we can figure out the canting angle.
Typically, we find small numbers, such as around 1-4o.

The problem with weak Bragg peaks is that they can also originate from multiple
scattering events. The resolution function of the spectrometer can be so accommodat-
ing that we can pick up the tail of a nuclear reflection and combine it with the tail
of a non-forbidden magnetic reflection in such a way that it looks like the neutrons
are scattered as if there exists a weak magnetic peak. We show an example of such a
multiple scattering event in Fig. 12.7.

These spurious peaks can fool, and have fooled, the best of us since they appear and
disappear exactly at the magnetic ordering transition. Whether a particular spurious
magnetic peak will show up, or not, depends strongly on the wave length of the neutron.
When in doubt, which should be always, simply repeat the experiment with a different
neutron energy, or look for other forbidden Bragg peaks using the same settings. Only
report on canting of the magnetic moments if the peaks survive these tests.

12.3 Pitfalls In Data Analysis

When our signal is easy to identify, such as a nice sharp excitation in an inelastic scat-
tering experiment, or perhaps the appearance of a new Bragg reflection below some
ordering temperature, then there is no need to read this section. It is just when our
signals get weak, or not so sharp, that we have to be extra vigilant. This even holds
when we already have been extra careful in correcting our data, and when we have
avoided all spurions.

Excitations that only persist for a short amount of time will show up as broad
features in inelastic scattering experiments. When these broad excitations have low
excitation energies, or when we are looking at quasi-elastic features, then we have to
be very careful in our line shape analysis. The data shown in Fig. 9.4 are an excellent
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Fig. 12.7 The bottom panel shows an antiferromagnetically ordered system, with the mo-

ments in the vertical direction. Shown is a forbidden reflection as the direction of transferred

momentum is parallel to the orientation of the magnetic moments. Therefore, such a reflec-

tion can only be observed if the moments are canted (slightly) away from the vertical. The

top panel shows how double Bragg reflection can mimic the presence of a forbidden reflection.

The neutron first reflects off of a set of nuclear Bragg planes, followed by a reflection off of

an allowed magnetic reflection. The result is a neutron exiting with an angle very close to

that of a forbidden reflection, giving the appearance of canted moments. It is only through

bad luck that such double reflection might occur, but they do occur. The situation depicted

corresponds to a lattice spacing of 11.7 Å in the horizontal direction, to 2.72 Å in the vertical

direction, and an incident neutron wave length of λ= 2.35 Å. The numbers were chosen to

represent an actual experiment of YBa2Cu3O6, studying the forbidden reflection (1/2,1/2,0).

See exercise 12.2 for a calculation of the angles involved.

example of how we can get it wrong.

The data in this figure (Fig. 9.4) show the transition from a superfluid to a normal
fluid. The transition temperature is at T= Tλ= 1.9203 K. What we observe in this
figure- where the dynamic structure factor is plotted- is the following. We see how a
very sharp excitation at the lowest temperature broadens in energy. This broadening
appears to be very similar just below, and just above the transition temperature. The
position of the peak (that is, the excitation energy) does not seem to shift very much
at all over the entire temperature range, from deep within the superfluid phase to well
into the normal fluid phase. It certainly does not look like we are following one of the
most spectacular transitions in nature.

The reason why nothing much seems to happen upon going through the superfluid
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to normal fluid transition is because we are inspecting the dynamic structure factor.
This function is a measure of the spontaneous fluctuations present in the fluid, and
it is what the double differential cross-section is proportional to. However, the shape
of this function is strongly influenced by the temperature in the sense that when we
raise the temperature, more excitations will be present in the liquid. This alters the
shape of the function, even when the amount of energy that is required to create an
excitation does not change. This is the detailed balance effect, and it tends to mask
subtle changes in excitation energies.

In order to study how much energy it takes to create an excitation, we should scru-
tinize the dynamic susceptibility. The dynamic susceptibility is a complex function
whose poles tell us the excitation energies of particular excitations, as well as their
lifetimes. The dynamic structure factor is closely related to the imaginary part of the
dynamic susceptibility. The exact relationship is given in table 4.1, but in essence the
relationship between the two is given by the thermal population factor, a measure of
how many excitations are present in the system at a given temperature.

Plotting the (imaginary part of) the dynamic susceptibility provides a better visual
representation of what the excitation energies are. We can even do one step better, and
plot a symmetrized dynamic structure factor Ssym(q, E) that accounts for the thermal
population factor as well as for the asymmetry implicit in the susceptibility. This new
function can be plotted straight from the neutron scattering data as

Ssym(q, E) =
1− e−βE

βE
S(q, E), (12.1)

with β = 1/kBT the reciprocal thermal energy.

The visual peaks in this function correspond very closely to the excitation energies
of the system, since they occur at the pole positions of the dynamic susceptibility. This
can be shown mathematically, but is is much easier to show using our actual helium
example. In Fig. 12.8, we simply replot the data of Fig. 9.4 by putting in the sample
independent prefactor of eqn 12.1. The change in appearance of the data is easy to
see. Not only do we see this change in appearance, we can now also directly follow the
fate of the excitations when going through the superfluid to normal fluid transition.
We still witness a broadening of the excitation, but now this broadening is combined
with a change in excitation energy. In particular, we now see how the excitation energy
changes from a non-zero value in the superfluid phase to a zero value in the normal
fluid phase. Notice that there is nothing in the replotting that would have forced this
change from non-zero (propagating) to zero (overdamped) to happen exactly at the
superfluid transition temperature.

The take home message of this replotting is that it is something that can be done
in the absence of any data analysis, and that it is a procedure that reveals, to the
naked eye, what the changes are in fundamental excitation energies of the system.
Therefore, when doing an experiment on excitations that are not terribly sharp (that
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Fig. 12.8 Figure reproduced with permission from W. Montfrooij et al., Phys. Rev. Lett. 77,

4398 (1996). Shown is the symmetrized dynamic structure factor Ssym(q, E = hν) for liquid
4He for q = 2.0 Å−1 at constant density ρ= 0.1715 g/cm3 as a function of temperature (given

in the figure). The data in this figure are obtained through a simple replotting of the data in

Fig. 9.4 (see text). The solid lines are guides to the eye. The data have not been corrected for

the resolution of the spectrometer. It is now possible to follow by eye the complete softening

of the elementary excitation at T= Tλ= 1.9203 K.

is, not terribly long lived), always do a replotting of the data while performing the
experiment to ensure that all the relevant temperatures are measured. Since this is an
important point, we will hammer it home in the next paragraph.

We can fit the data shown in Fig. 12.8 to a model such as the harmonic oscillator
function. We show the results of such a fitting procedure in Fig. 12.9. What this graph
demonstrates are the very rapid changes extremely close to the phase transition. These
changes are visible in Fig. 12.8, but they are totally invisible in Fig. 9.4. The conse-
quence of this is that if we simply rely on Fig. 9.4, then we are likely to not take any
measurements at any temperatures between 1.90 K and the phase transition, thereby
missing out on most of the changes.

The wrong conclusions that would be drawn from (only) visually inspecting Fig.
9.4 are not restricted to liquid helium. We can expect similar misinterpretations in
any broad excitation close to zero energy transfer. This can be magnetic scattering
close to an ordering transition, or it can pertain to the scattering by a biological mem-
brane. When excitations are very sharp in energy, then there is little likelihood of
misinterpretations since the prefactor in eqn 12.1 would only need to be evaluated at
one particular energy transfer, namely the excitation energy.

The above description dealt with visual inspection of the data and how easy it is
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Fig. 12.9 Figure reproduced with permission from W. Montfrooij et al., Phys. Rev. Lett.

77, 4398 (1996). The open circles are the excitation energies of the roton (sharp peak in Fig.

12.8), as determined through a fit to a harmonic oscillator model. The excitation energies

can be seen to soften upon raising the temperature until they soften completely exactly at

the superfluid to normal fluid transition at T= Tλ= 1.9203 K. We leave it up to the reader

to guess what the solid line and the stars stand for.

to conclude that nothing much is going on when in fact some very rapid changes are
occurring. It did not deal with the details of modeling the data in order to obtain
excitation energies and life times of these excitations. During the modeling stages we
use a model that has excitation energies and life times as free parameters, and we fit
such a model to the data taking proper care to broaden our model according to the
experimental resolution function of the spectrometer. While the folding of the model
with the spectrometer’s resolution function might appear to be the place where most
pitfalls can be found, it is actually in the model itself where most mistakes are being
made.

We take the harmonic oscillator function as an example. A harmonic oscillator is
described by an oscillation frequency ωp, and by a damping Γ, provided the oscillator is
not critically damped, or overdamped. It is straightforward to arrive at the expression
that describes the neutron scattering data by doing a Fourier transform from the time
domain to energy transfer (with E = h̄ω):

Ssym(q, ω) =
1− e−βh̄ω

βh̄ω
S(q, ω)

=
Ssym(q)

π
[

Γ

Γ2 + (ω − ωp)2
+

Γ

Γ2 + (ω + ωp)2
].

(12.2)

This equation has a nice, straightforward interpretation. The neutron can create an
excitation with energy h̄ωp (the first term), or it can absorb an excitation of the same
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energy (second term). The prefactor Ssym(q) in front of the excitations is the equiv-
alent of the static structure factor. Note that it is not actually the static structure
factor, rather it is directly related to the static susceptibility. But these are details,
let us instead focus on where one can easily go wrong in determining the excitation
frequencies from a beautifully executed and analyzed neutron scattering experiment.

When we use eqn 12.2, we assume a priori that the excitations are not critically
damped, or overdamped. Bluntly put, it is like sticking a pendulum clock under wa-
ter and assuming it will run. One might think that not running is a possibility that
can be accommodated by using eqn 12.2, since a fitting procedure to the data would
presumably reveal a value of ωp= 0. This is not the case since an harmonic oscillator
that is overdamped has two damping rates, Γ1 and Γ2, whereas eqn 12.2 only has one
damping rate when ωp= 0.

The way to fit the data is to not assume that the excitations are going to be
propagating (ωp 6= 0), but instead fit the data to a more general expression that
encompasses eqn 12.2. We do this by using the oscillation frequency in the absence of
damping, Ω0, and the damping parameter Z that embodies the mechanism by which
oscillations slow down. However, Z is not identical to the damping rate Γ used in
eqn 12.2. The following expression is the correct expression for when using a damped
harmonic oscillator form to model the excitations in one’s sample, without presuming
that ωp 6= 0:

S(q, ω) =
βh̄ω

1− e−βh̄ω
Ssym(q, ω)

=
βh̄ω

1− e−βh̄ω
Ssym(q)

π

Ω2
0Z

(Ω2
0 − ω2)2 + (ωZ)2

.

(12.3)

The reader can verify that eqn 12.3 and eqn 12.2 are equivalent for ωp 6= 0 by making

the substitution ωp =
√

Ω2
0 − Z2/4 and Γ = Z/2. When the excitations are over-

damped however (that is, when Z/2 > Ω0), then one finds Γ1 = Z/2 +
√
Z2/4− Ω2

0

and Γ2 = Z/2−
√
Z2/4− Ω2

0. In short, eqn 12.3 can always be used to model a har-
monic oscillator, whereas eqn 12.2 or its equivalent expression below can only be used
for the case when the excitations are not overdamped:

Ssym(q, ω) =
Ssym(q)

π

2Ω2
0Γ

(ω2
p + Γ2 − ω2)2 + (2ωΓ)2

. (12.4)

For the sake of completeness (after all, this is a physics book), the equivalent expression
for the case of overdamping would read:

Ssym(q, ω) =
Ssym(q)

π

Γ1Γ2(Γ1 + Γ2)

(Γ1Γ2 − ω2)2 + (ω(Γ1 + Γ2))2
.

There are other mistakes one can make during the data analysis stages, such as
using a model that has too many free parameters in it. For instance, when neutrons
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are scattered by a liquid, there are certain sum rules to the scattering that one has to
build into one’s model. We will not detail this here, we refer the reader to the text-
book on liquids (’Excitations in simple liquids, liquid metals and superfluids’) in case
one needs to be made aware of such sum rules and how to build them into one’s model.

The bottom line of this chapter is to be aware of how subtle changes in excitation
energies can be masked because our signal in experiments is proportional to the dy-
namic structure factor, not to the dynamic susceptibility. And sometimes we can mess
up by using a model that is no longer applicable to our data. The latter is especially
sad since we might end up with a very good fit between model and data, just not the
best fit, or even a physical fit.

12.4 Exercises

Exercise 12.1

Derive an analytical expression for the attenuation factor for a slab of finite thick-
ness τ and infinitely large in all other directions, oriented at an angle φ0 with respect
to the incoming neutrons beam (with φ0 = 0 the situation where the normal of the
slab coincides with the incident neutron direction). Assume the sample does not ab-
sorb neutrons, and that the scattering power of the sample is given by nσ = Σ.

Exercise 12.2

Calculate all relevant angles involved in the double magnetic scattering events
shown in Fig. 12.7, using the numbers listed in the figure caption. Verify that as long
as the resolution function is of the order of 0.5-1o, that the tails of the resolution
function allow for the depicted scattering events to occur.

Exercise 12.3

Suppose eqn 12.2 describes the observed scattering in a liquid system. With ’de-
scribes’ we mean that we observe very good agreement between the model and the
data. Show that in this case we have the relationship:

Γ2 + ω2
p =

kBTq
2

mSsym(q)
=

q2

2πmχ(q)
.

Hint, you will have to use the sum rules valid for S(q, E).
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Appendix A

Conversions

Depending on whether one is talking to chemists, physicists or biologists, and depend-
ing where they come from, different units are being used to quantify the amount of
energy transferred from the neutron to the sample. For instance, one can encounter
various units such as meV, THz and ps−1, as well as some less common ones such
as cm−1. The table below lists the conversions between the various common units,
and the not so common ones. For example, if one wants to evaluate the exponen-
tial e−E/kBT with E expressed in meV and T in Kelvin, then this exponential would
become e−E∗11.605/T .

Table A.1 The conversions between the energy units employed in scattering experiments.

The conversions are carried out using : E = hν = h̄ω = h̄ck = kBT = µBH.

E ν ω k T H

[meV] [THz] [ps−1] [cm−1] [K] [Tesla]

1 meV = 1 0.24180 1.5193 8.0655 11.605 17.326

1 THz = 4.1357 1 6.2832 33.356 47.994 71.655

1 ps−1 = 0.65821 0.15912 1 5.3088 7.6384 11.404

1 cm−1 = 0.12398 0.029979 0.18837 1 1.43883 2.1481

1 K = 0.086170 0.020836 0.13092 0.69500 1 1.4930

1 Tesla = 0.057717 0.013956 0.087689 0.46551 0.66980 1

The energy of a neutron is measured in meV, but it can also be characterized by its
speed v, its wave length λ or its wave number k. If we use the units [meV] for energy,
[km/s] for speed, [Å] for wave length and [Å−1] for wave number, then the numerical
conversions read:

E = 5.2267v2 =
81.799

λ2
= 2.072178k2. (A.1)

For example, a 4 Å neutron has an energy of about 5 meV and travels roughly at 1000
m/s.



Appendix B

Scattering Length Tables and
Sample Thickness Calculations

In this appendix we list commonly used information that is useful in planning and
analyzing neutron scattering experiments.

The tables are for the scattering lengths for the atoms, and for some isotopes. All
absorbtion cross-sections are listed for neutrons of 25.3 meV. At a glance, the tables
will tell the experimenter whether a particular element absorbs so strongly that it
can be a problem in neutron scattering experiments. But the tables will also help in
calculating how much material one needs to obtain a sample that scatters neutrons by
the desired amount. We give an example of the latter.

Suppose we wish to investigate a sample of CeFe2Ge2. The unit cell of this sample
contains 2 formula units, and the tetragonal unit cell measures 4 x 4 x 10 Å3. We wish
to calculate what thickness we would need for about a 10 % scatterer. In other words,
we are looking for the thickness L that yields a 90 % transmission as in T = 0.9e−nσL,
or nσL ≈ 0.1. n is the number density, which in this case would be 2 formula units
per 160 Å3, or 1.25 x 1022/cm3. We use units of cm, so that we get our thickness in cm.

Next we need to calculate the scattering cross section per formula unit, which is a
combination of the coherent and incoherent scattering cross-sections. We use the table
below to find

σscat,formula unit = σCe,coh + σCe,inc + 2σFe,coh + 2σFe,inc + 2σGe,coh + 2σGe,inc.

Putting in the numbers we find σformula unit= 43.78 barn = 43.78 x 10−24 cm 2. With
these numbers we find L= 0.18 cm, so not very thick at all.

Let us also check on the absorbtion cross-section, to see if this would be a problem.
We evaluate this for neutrons that have an energy of 25.3 meV, thus,

σabs,formula unit = σCe,abs + 2σFe,abs + 2σGe,abs.

Using the tables below we find σabs,formula unit= 10.15 barn. For a sample of 0.18 cm
thickness, this would lead an absorbtion of about 2.2 % of the neutrons. This is a
very manageable number, so we do not have to worry about the feasibility of the
experiment, but we probably should correct for it during the analysis stages.
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These tables have the incoherent cross-sections listed per element. This incoherent
cross-section can come from different isotopes that make up the element as found in
nature, and it can come from the incoherent cross-section of individual atoms. We can
have another source of incoherent scattering in samples, namely when we have more
than one atom that can sit on identical positions in the unit cell. For instance, going
back to our example of CeFe2Ge2, we can decide to substitute some ruthenium in place
of the iron atoms. This will give rise to incoherent scattering since now the scattered
waves originating from nominally identical positions within the crystal lattice, will
have a different scattering strength. We would have to recalculate the coherent and
incoherent cross section in this case.

This calculation follows the following recipe. We define an average scattering length
b̄ and an average of the scattering length squared ¯(b2). With these numbers we define
the coherent and incoherent cross-sections by

σcoh = 4πb̄2

σinc = 4π[ ¯(b2)− b̄2].

Looking at the total scattering, we see that we do not add or subtract from the total
level of scattering which still is 4π ¯(b2), but rather some of the coherent scattering now
becomes incoherent scattering.

Suppose we substitute 25 % Ru on the Fe sites in CeFe2Ge2. We then find that
the average scattering length on the Fe/Ru site is 8.96 fm, and the average scattering
length squared is 81.25 fm2. This gives us σcoh, Fe/Ru= 10.09 barn and σinc, Fe/Ru=
0.122 barn. To this latter number for the incoherent cross-section, we would still have
to add the incoherent cross-section per atom, that is, 0.75 x σinc, Fe + 0.25 x σinc, Ru=
0.4 barn. The reason for this is that we still have the incoherent cross-section that each
individual atom contributes, but we have added to the loss of coherence by randomly
substituting Ru atoms on Fe sites. We would then use those numbers (σcoh, Fe/Ru=
10.09 barn and σinc, Fe/Ru= 0.52 barn) in our further calculations to calculate the
scattering cross-section per formula unit.
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Table B.1 The element and isotope dependent scattering lengths and cross-sections. ’*’

refers to the naturally occurring isotope mixture for an element. 1 barn = 10−24 cm2.

Z Name A mass bcoh σcoh σinc σabs

[au] [fm] [barn] [barn] [barn]

1 H * 1.008 -3.739 1.757 80.263 0.333

1 D 2 2.016 6.671 5.592 2.048 0.001

1 T 3 3.024 4.940 3.067 0.000 0.000

2 He * 4.003 3.260 1.336 0.004 0.007

2 He 3 3.003 5.740 4.140 1.460 5333

2 He 4 4.003 3.260 1.336 0.004 0.000

3 Li * 6.941 -1.900 0.454 0.916 70.500

3 Li 6 6.015 1.870 0.439 0.541 940

3 Li 7 7.016 -2.200 0.608 0.832 0.045

4 Be * 9.012 7.790 7.626 0.004 0.008

5 B * 10.810 5.300 3.530 1.710 767.000

5 B 10 10.013 0.000 0.000 0.980 3837

5 B 11 11.009 6.660 5.574 0.226 0.001

6 C * 12.011 6.646 5.550 0.001 0.004

7 N * 14.007 9.360 11.009 0.501 1.900

8 O * 15.999 5.803 4.232 0.000 0.000

9 F * 18.998 5.654 4.017 0.001 0.010

10 Ne * 20.179 4.566 2.620 0.008 0.039

11 Na * 22.990 3.580 1.611 1.674 0.530

12 Mg * 24.305 5.375 3.631 0.079 0.063

13 Al * 26.982 3.449 1.495 0.008 0.231

14 Si * 28.086 4.153 2.168 0.003 0.171

15 P * 30.974 5.130 3.307 0.005 0.172

16 S * 32.060 2.847 1.019 0.007 0.530

17 Cl * 35.453 9.577 11.526 5.274 33.500

18 Ar * 39.948 1.909 0.458 0.225 0.675

19 K * 39.098 3.670 1.693 0.267 2.100

20 Ca * 40.080 4.760 2.847 0.043 0.430

21 Sc * 44.956 12.290 18.981 4.519 27.500

22 Ti * 47.900 -3.438 1.485 2.865 6.090

23 V * 50.942 -0.382 0.018 5.082 5.080

24 Cr * 51.996 3.635 1.660 1.830 3.050
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Table B.2 The element and isotope dependent scattering lengths and cross-sections, con-

tinued

Z Name A mass bcoh σcoh σinc σabs

[au] [fm] [barn] [barn] [barn]

25 Mn * 54.938 -3.730 1.748 0.402 13.300

26 Fe * 55.847 9.540 11.437 0.383 2.560

27 Co * 58.933 2.780 0.971 4.829 37.180

28 Ni * 58.700 10.300 13.332 5.168 4.490

29 Cu * 63.546 7.718 7.485 0.545 3.780

30 Zn * 65.380 5.680 4.054 0.077 1.110

31 Ga * 69.720 7.288 6.675 0.155 2.750

32 Ge * 72.590 8.185 8.419 0.181 2.200

33 As * 74.922 6.580 5.441 0.059 4.500

34 Se * 78.960 7.970 7.982 0.318 11.700

35 Br * 79.904 6.795 5.802 0.098 6.900

36 Kr * 83.800 7.810 7.665 0.015 25.000

37 Rb * 85.468 7.090 6.317 0.483 0.380

38 Sr * 87.620 7.020 6.193 0.057 1.280

39 Y * 88.906 7.750 7.548 0.152 1.280

40 Zr * 91.220 7.160 6.442 0.018 0.185

41 Nb * 92.906 7.054 6.253 0.002 1.150

42 Mo * 95.940 6.715 5.666 0.044 2.480

43 Tc * 97.000 6.800 5.811 0.489 20.000

44 Ru * 101.070 7.210 6.533 0.067 2.560

45 Rh * 102.906 5.880 4.345 0.255 144.800

46 Pd * 106.400 5.910 4.389 0.091 6.900

47 Ag * 107.868 5.922 4.407 0.583 63.300

48 Cd * 112.410 5.100 3.269 2.431 2520

49 In * 114.820 4.065 2.076 0.544 193.800

50 Sn * 118.690 6.225 4.870 0.022 0.626

51 Sb * 121.750 5.570 3.899 0.001 4.910

52 Te * 127.600 5.800 4.227 0.093 4.700

53 I * 126.905 5.280 3.503 0.307 6.150

55 Cs * 132.905 5.420 3.692 0.208 29.000

56 Ba * 137.330 5.070 3.230 0.150 1.100

57 La * 138.906 8.240 8.532 1.128 8.970
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Table B.3 The element and isotope dependent scattering lengths and cross-sections, con-

tinued

Z Name A mass bcoh σcoh σinc σabs

[au] [fm] [barn] [barn] [barn]

58 Ce * 140.120 4.840 2.944 0.000 0.630

59 Pr * 140.907 4.450 2.488 0.042 11.500

60 Nd * 144.240 7.690 7.431 9.169 50.500

61 Pm * 145.000 12.600 19.950 1.350 168.400

62 Sm * 150.400 0.800 0.080 38.920 5922

63 Eu * 151.960 7.220 6.551 2.649 4530

64 Gd * 157.250 6.500 5.309 174.691 49700

65 Tb * 158.925 7.380 6.844 0.000 23.400

66 Dy * 162.500 16.900 35.891 54.409 994

67 Ho * 164.930 8.010 8.063 0.357 64.700

68 Er * 167.260 8.160 8.367 0.833 159

69 Tm * 168.934 7.070 6.281 0.099 100

70 Yb * 173.040 12.430 19.416 3.984 34.800

71 Lu * 174.967 7.210 6.533 0.667 74.000

72 Hf * 178.490 7.770 7.587 2.613 104.100

73 Ta * 180.948 6.910 6.000 0.010 20.600

74 W * 183.850 4.860 2.968 1.632 18.300

75 Re * 186.200 9.200 10.636 0.864 89.700

76 Os * 190.200 10.700 14.387 0.313 16.00

77 Ir * 192.220 10.600 14.120 0.000 425

78 Pt * 195.090 9.600 11.581 0.129 10.300

79 Au * 196.967 7.630 7.316 0.434 98.650

80 Hg * 200.590 12.692 20.243 6.557 372.300

81 Tl * 204.370 8.776 9.678 0.212 3.430

82 Pb * 207.200 9.405 11.115 0.003 0.171

83 Bi * 208.980 8.532 9.148 0.008 0.034

88 Ra * 226.025 10.000 12.566 0.434 12.800

90 Th * 232.038 10.520 13.907 0.003 7.370

91 Pa * 231.036 9.100 10.406 0.094 200.600

92 U * 238.029 8.417 8.903 0.005 7.570

93 Np * 237.048 10.550 13.987 0.513 175.900



Appendix C

Some Physics Background on
Scattering Lengths

In this appendix we give some background about the scattering process of the neutron
by the nucleus. Physicists who read this part will feel good about themselves, non-
physicists who read this appendix probably would have done quite well as a physicist.
We will discuss three points relevant to the scattering process:

• how can a plane wave that is incident on a nucleus give rise to a spherically
symmetric scattered wave, or in other words, why is the scattering likelihood by
a single atom not a function of the angle over which a neutron is scattered?

• why are the scattering lengths roughly the same as the radius of the nucleus?

• why are some scattering lengths negative, and why are some very large?

It is always possible to represent a function of any shape by a summation over a
set of standard functions, as long as this set of standard functions satisfies certain
requirements. An example of such a set would be the set of sine of cosine functions.
A plane wave, which is a good representation of the incident neutron wave, can be
represented by a summation over a set of partial waves. We show this in Fig. C.1.
For the physicists amongst us, we decompose the plane wave into a summation over
partial waves as follows:

ei~q.r =
∞∑
`=0

(2`+ 1)i`j`(qr)P`(cosθ). (C.1)

In here, the j`(qr) are Bessel functions, and the P`(cosθ) are the Legendre polynomi-
nals.

In the scattering process, the partial waves that make up the plane wave get scat-
tered by the nucleus. After the scattering process, we would add up all the partial
waves again to see what the resultant neutron wave would look like after the inter-
action of the neutron with the nucleus. In order for a partial wave to be modified in
the scattering process, this partial wave will have to have an appreciable amplitude
in the region of the nucleus. Only the partial wave of order ’zero’ has an appreciable
amplitude. All other partial waves, the ones that have some angular dependence to
them, fall off very rapidly in amplitude near the origin (which was chosen to be at
the center of the nucleus). In fact, the partial waves of order ` fall off as ∼ (qr)` with
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Fig. C.1 By adding up successive partial waves we can end up with any functional shape

that we desire. The figure shows the results after adding up terms according to eqn C.1. The

`=0 result is shown top left, all terms up to `=2 are shown at the bottom left (the leftmost

figure is the partial wave, the figure just to the right of it is the summation over all partial

waves up to `=2), all terms up to `= 6 are shown at the top right, and all terms up to `= 12

are shown at the bottom right. The characteristic plane wave pattern is almost complete for

this latter summation.

r the distance to the center of the nucleus since j`(x) ∼ x`. Given typical q-values
and nuclear sizes, we have that qr is of the order of 10−4-10−5 inside the nucleus, so
that only the ` = 0 wave can be changed in the scattering process. By extension, the
scattered wave will not show any angular dependence, it will be spherically symmetric.
This is called s-wave scattering.

Since the scattering by a single nucleus will not have angular dependence, we can
write the wave function Ψ of the neutron (the solution to the Schrödinger equation)
as a combination of the incoming plane wave and the outgoing scattered wave:

Ψ = ei~q.r − beiqr/r. (C.2)

In here, b is a coefficient of the partial wave of order zero, a number we have identified
as the scattering length of a nucleus. The 1/r dependence of the scattered wave ensures
that when we are far away from the nucleus, that the intensity of the scattered wave
fall of as 1/r2 since it will be given by the amplitude squared of the scattered wave.
In particular, we would find that

|Ψ|=b
eiqr

r
b
e−iqr

r
=
b2

r2

Also note that if we integrate over all 4π angles across the surface of a sphere a dis-
tance r away from the scattering center, we get the overall scattering amplitude of
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4πb2, a number we have referred to as σ, the scattering cross-section.
Now that we have established that the scattered waves are spherically symmetric

because of the smallness of the argument qr, we can estimate the order of magnitude
of the scattering length b. We imagine the nucleus to be an impenetrable hard sphere
of radius RN . The wave function inside this hard sphere will have zero amplitude, and
because of the condition of continuity on wave functions, we must also have that Ψ(rN )
equals zero. Evaluating eqn C.2 at r = RN and making use of the approximation that
ei~q~r ≈ eiqr ≈ 1 given the smallness of qr, we immediately find that b ≈ rN . This order
of magnitude estimate was shown in Fig. 3.3 and it can be seen to be a good overall
approximation for b.

We can do a a better job at calculating the scattering length b. While treating the
neutron-nucleus interaction as a collision between hard spheres gives us the correct
order of magnitude, it fails to capture the details of the scattering process, and the
fact that the interaction is attractive. A more realistic approximation is the square
well potential:

V (r) = −V0 if r < rN and zero elsewhere.

In order to find a solution to the Schrödinger wave equation for a neutron of energy
E that is continuous at r = RN , we now have to match the two solutions inside and
outside the square well at r = RN . In fact, we have to match the wave functions, and
their derivatives for a square well-potential that is not infinitely deep. The solution
inside a square well can be looked up in standard textbooks, or the (physics) reader
can verify it by plugging it into the Schrödinger equation. Thus, we need to match:

Ψinside(r) = Asin(Qr)/r with h̄Q = [2mE + V0]0.5

Ψoutside(r) = ei~q.r − beiqr/r with h̄q = [2mE]0.5.

Note that Qr can be very large when V0 is very large, which is the case inside a
nucleus. qr on the other hand will remain small so that we can make the approximation
Ψoutside(r) = 1−b/r. Evaluating and equating the wave functions and their derivatives
as r = RN we find

A sin(Qr) = RN − b
AQ cos(Qr) = 1.

Dividing the two equations we find:

b

RN
= 1−

tan(QRN )

QRN
. (C.3)

We show the solution of eqn C.3 in Fig. C.2 for illustrative values of V0=-50 MeV
and E= 25 meV. While picking just one number to describe all atoms, the figure
does show why some scattering lengths can be negative, and also why most scattering
lengths are of the order b ≈ RN : the latter is because of the shape of the tangent curve.
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Fig. C.2 The solution (solid line) to eqn C.3 evaluated for V0=-50 MeV and E= 25 meV

and compared to the measured scattering lengths of various atoms. RN is approximated by

RN = 1.3A1/3, with A the number of nucleides (neutrons and protons).

We can also use the above solution to understand, conceptually, why some scatter-
ing lengths can be negative, and why some are very large. We show this graphically in
Figs. C.3 through C.5. What we have done is that we picked one value for the nuclear
radius, and we varied the depth of the square-well potential. We matched the solutions
inside and outside the square well by ensuring that they are at the same level, and
that they have the same slope. When plotting the wave functions multiplied by r, then
we can read of the scattering length as the intercept of the horizontal axis. The reader

Fig. C.3 Plotted is rΨinside(r) and rΨoutside(r) in(r). The nuclear radius has been fixed at

5 fm, and the depth of the square well potential has been chosen to be 50 MeV. Both wave

functions, and their derivatives, are made to match at r = RN . The arrow points to the point

where rΨoutside(r) = r − b = 0. This type of solution is characteristic for most atoms.
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can verify from these figures that this intercept can be both at positive or negative
values, and that this intercept can occur at very large values indeed. This discussion
is meant to illustrate the variety of scattering lengths, as well as the fact that most
scattering lengths are of the same order as the nuclear radius.

Fig. C.4 Plotted is rΨinside(r) and rΨoutside(r) in(r). The nuclear radius has been fixed at

5 fm, and the depth of the square well potential has been chosen to be 10 MeV. Both wave

functions, and their derivatives, are made to match at r = RN . The arrow points to the point

where rΨoutside(r) = r − b = 0.

Fig. C.5 Plotted is rΨinside(r) and rΨoutside(r) in(r). The nuclear radius has been fixed at

5 fm, and the depth of the square well potential has been chosen to be 22 MeV. Both wave

functions, and their derivatives, are made to match at r = RN . The invisible arrow points to

the point where rΨoutside(r) = r − b = 0.



Appendix D

Fourier and Laplace Transforms

Fourier and Laplace transforms connect the scattering function between reciprocal
space and real space, and between energy transfer and time. Because of quantum
mechanics, which states that not all operators commute, the scattering functions are
defined (deep down) as commutators, and the more familiar functions such as the
dynamic structure factor are related to these commutator based entities. In this ap-
pendix we give the formal definition for the dynamic susceptibility, followed by some
examples for more familiar functions.

In real space and in time, we define the imaginary part of the response function
between two variables A and B as follows:

χ”AB(~r − ~r′, t− t′) ≡
1

2h̄
< [A(~r, t), B(~r′, t′)] >eq . (D.1)

The square brackets denote the commutator, while < ... >eq stands for the ensemble
average. The variable most relevant to neutron scattering is the number density n, and
moreover, we are mostly interested in those response functions between the density
and the density: A = B = n. Thus (classically speaking), we perturb the density
away from its equilibrium density near some location ~r at time t, and we study how
the density near point ~r′ at time t′ responds to this disturbance. We use a Fourier
transform to go from real space to reciprocal space, and from time to energy transfer
E = h̄ω:

χ”(~q, ω) =

∫ ∞
−∞

dt”eiωt”
∫
V

d~r”e−i~q.~r”χ”(~r”, t”). (D.2)

In the above equation we dropped the label A = B = n. This imaginary part of
the dynamic susceptibility is directly related to the dynamic structure factor, the one
that we measure in inelastic neutron scattering experiments:

χ”(~q, ω) =
1− e−βh̄ω

2h̄
S(~q, ω). (D.3)

The above equations are correct, but note that we did not directly carry out a
Fourier transform of the intermediate scattering function F (~q, t) to obtain S(~q,E).
We did this because the interpretation of the intermediate scattering function is not
very straightforward. For starters, it is a function that takes on complex values, while
we think of it as a real function. In fact, the intermediate scattering function that is
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determined through computer simulations is a real function, but it is not the Fourier
transform of the dynamic structure factor. We wished to leave those difficulties behind
and instead we hid behind the formal definitions in terms of commutators.

Instead of a Fourier transform, one also tends to use a Laplace transform to go
from a time-dependence to an energy dependence. For the dynamic susceptibility, this
Laplace transform is given by

χ(~q, z) = 2i

∫ ∞
0

dt”eizt”
∫
V

d~r”e−i~q.~r”χ”(~r”, t”), (D.4)

for Im[z]>0 (corresponding to ’physical’, positive times t”>0), with t”=t-t’ and ~r”=~r-
~r’. A similar definition holds for Im[z]<0 (corresponding to ’unphysical’, negative times
t”<0). Substituting eqn D.2 into eqn D.4 one finds, for Im[z]6= 0,

χ(~q, z) =
1

π

∫ ∞
−∞

dωχ”(~q, ω)
1

ω − z
. (D.5)

Ideally, one would like to determine the poles of the dynamic susceptibility; these
poles give us both the energies as well as the life times of the excitations of the system
that we are studying. We only have access to the imaginary part of the susceptibil-
ity, and performing the transformation embodied in eqn D.5 is a tour de force. But
as mentioned in Chapter 12 (eqn 12.1), by using the symmetrized dynamic structure
factor we can circumvent most of the difficulties associated with only having access to
the imaginary part of the susceptibility.

Now that we have given the formal and correct definitions (so that we will not get
expelled from the APS for being too handwavy), we will move on to some more useful,
and slightly incorrect examples of frequently encountered functions.

D.1 Examples

In this section we pretend quantum mechanics does not really exist in the sense that
functions such as the intermediate scattering function are real valued. The purpose
of this section is to give the reader an idea of what kind of line shapes to expect for
certain processes within the system.

When we perform quasi-elastic scattering experiments, where we probe the scat-
tered signal close to zero energy transfers, we often find a line shape in energy that
looks Lorentzian. Classically speaking, this is the line shape that can be expected for
a diffusion process. We will discuss how diffusion manifests itself in the scattering
functions, and their relationship to real space functions.

The microscopic number density n(~r, t) for a system of N particles is defined in
real space as a function of time as

n(~r, t) =
N∑
i

δ(~r − ~ri(t))/
√
N, (D.6)
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with ~ri(t) the position of particle i at time t. The density-density correlation function
Gnn(~r− ~r′, t− t′) measures what effect a density disturbance at position ~r and time t
has on the density of the fluid at position ~r′ at a later time t′:

Gnn(~r − ~r′, t− t′) ≡< n(~r, t)n(~r′, t′) >eq . (D.7)

The ensuing density disturbance n(~r′, t′) can take on various guises. For instance, we
could observe that at time t′ the atoms alternately compress and rarefy, until they
return back to their average equilibrium state. This of course would have happened
because a sound wave that originated at ~r passed through the region around ~r′ with
a propagation speed of |~r− ~r′|/(t′ − t). This can happen both in solids and in liquids.

Alternatively, in liquids, we could observe that some new atoms streamed into
the region around ~r′, pushing out some of the atoms already there. This would cor-
respond to the density disturbance at ~r relaxing back to equilibrium through the
collective diffusion mechanism with the diffusion constant for this process given by
D = |~r − ~r′|2/(t′ − t).

What line shape would be associated with a diffusion process? Imagine increasing
the density locally at some point in a liquid with the result that a deviation n(~r, t)
from the average equilibrium density neq has been created. For this excess density to
disappear, it must be that more particles are leaving the region than are entering it,
so we must have that ∂/∂t n(~r, t) ∼ −~∇.~u(~r, t). Here ~u(~r, t) is the velocity of the fluid
near ~r at time t. Furthermore, the velocity itself must have arisen in the first place
because of a gradient in the density; after all, particles move from places of high density
to places of low density. Thus, ~u(~r, t) ∼ −~∇n(~r, t). After eliminating the velocity, we
get

∂/∂tn(~r, t) ∼ ∇2n(~r, t) ≡ D∇2n(~r, t).

This is Fick’s law for diffusion. This equation can be solved directly, or it can be solved
by Fourier or Laplace transforming. It is easily verified that the solution is

G(r, t) = 1/
√

4πDste
−r2/4Dt,

F (q, t) = e−Dq
2t ≡ e−t/τ ,

and the associated dynamic structure factor is obtained through a Laplace trans-
form (valid for our classical approximation) to read:

S(q, ω) =
1

π

Dq2

ω2 + (Dq2)2
. (D.8)

In order to obtain this result we used the following Laplace transformation which
works very nicely for our classical approximation:

S(q, ω) = Re[

∫ ∞
0

dteiωtF (q, t)].

In experiments, one frequently uses this line shape to describe quasi-elastic scattering
data. In practice, one convolutes this line shape with the resolution function of the
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spectrometer in order to obtain a good agreement between the diffusion model and
the measured line shape.

Eqn D.8 shows us that what we would call the relaxation rate Γ is given by Γ = Dq2,
or equivalently, a characteristic decay time τ of τ = 1/Dq2. This ∼ q2 dependence is
characteristic of all damping processes involving diffusion.

When we have excitations that are propagating, while decaying at the same time,
we also will get Lorentzian lineshapes, or something close to it. Suppose we have
an excitation that takes an amount of energy h̄ωp to create and that persists for a
characteristic time τ . The intermediate scattering function of such an excitation would
be given by:

F (q, t) = eiωpt−t/τ ,

yielding a dynamic structure factor

S(q, ω) =
1

π

1/τ

(ω − ωp)2 + (1/τ)2
.

This equation immediately tells us that we need to transfer h̄ω = h̄ωp in energy to
get a nice peak in our dynamic structure factor, and that the sharpness of the peak
is determined by the decay time. The shorter the decay time, the broader the peak.
As mentioned in Chapter 12, this equation is not complete. Excitations can already
spontaneously exist in the system, and the neutron can absorb them. hence there
would be an additional term in the dynamic structure factor given by

S(q, ω) ∼
1

π

1/τ

(ω + ωp)2 + (1/τ)2
.

The weight of the two terms is determined by the temperature of the system since the
temperature determines how much energy is available for excitations to spontaneously
exist. When we add up the two parts of the structure factor, in the correct way as
explained in the chapter on pitfalls in data analysis, then we obtain expressions such
as eqn 12.4. The main point here is that when we have disturbances that take a certain
amount of time to decay, then we expect (almost) Lorentzian lines in energy in the
dynamic structure factor. They are just not exactly Lorentzian because real systems
do not behave according to classical laws, so that we get slightly more complicated
expressions such as those in eqn 12.4.

In Chapter 4 and exercise 4.3 we encountered a Gaussian line shape in energy for
very large momentum transfers in liquids. This is one of the few instances that we ac-
tually have a Guassian line shape that is caused by an intrinsic process of our system.
Very frequently we will encounter line shapes that are Gaussian because the width in
energy of the resolution function of the spectrometer is so much larger than 1/τ that
the underlying Lorentzian line shape has been rendered unrecognizable.

The above discussion deals with line shapes in energy, but what does the scat-
tering look like as a function of momentum transfer, especially in the case of elastic
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scattering where we look at correlations between neighboring positions or orientations
of magnetic moments? We can expect a variety of shapes under these circumstances,
depending on the dimensionality of our system.

Suppose we have correlations between neighboring atoms that persist over a char-
acteristic distance ξ, the correlation length. The easiest way to visualize this is by
picturing magnetic moments that have a tendency to align with their neighbors, but
do not exhibit long range order from one side of the sample to the other because ther-
mal fluctuations disturb this ordering tendency. As a result, moments will typically be
correlated over a distance ξ.

When we do a neutron scattering experiment, we will find that the correlation
between neighboring moments decays as

g(r) ∼ e−r/ξ. (D.9)

We did not include any time dependence in the above correlation function since in
this example we are talking about the instantaneous correlation between moments.
Instantaneous implies that we average over all energies of the scattered neutron, which
implies that we are doing a diffraction experiment. Which is what one typically does
when one is interested in the degree of correlation between neighboring moments (or
positions between neighboring atoms in a liquid).

In neutron scattering we would measure the Fourier transform, from real space to
reciprocal space:

S(~q) =

∫
V

d~re−i~q.~rg(r).

The line shape (in q) that we can expect depends on whether the moments are corre-
lated with each other in a three dimensional sense, or whether the moments first line
up in a plane, or even along a line. As an example, we calculate S(q) for a system of
magnetic moments that order with respect to their neighbors, but in such a way that
the moment vectors are oriented in a plane, with no preferred overall direction in the
plane. What we mean by this is that all the moments are lining up with their neigh-
bors, but the net moments of this lined-up conglomerate can point in any direction
of the plane. Thus, we will not have any preferred direction of momentum transfer ~q,
so we will have to average over all directions in the plane. We have a 2-dimensional
problem on our hand.

The integral is straightforward to carry out, and we actually give some details of
the steps involved so that the reader can perform similar integral in other dimensions:
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S(q) ∼
∫∞

0
dr
∫ 2π

0
dθr sin θe−iqr cos θe−r/ξ

= 2
∫∞

0
drr

∫ 1

−1
d cos θe−iqr cos θe−r/ξ

=
2

−iq
∫∞

0
dr[e−iqre−r/ξ − eiqre−r/ξ]

=
2

−iq
[
− 1

−iq − 1/ξ
−

− 1

iq − 1/ξ
]

=
4

q2 + 1/ξ2
.

Thus, S(q) is described by a Lorentzian line shape in q, and 1/ξ takes on the role
of the width of the peak in q-space. Note that we did not keep track of normalization
factors since we merely stated that the decay of correlations follows an exponential
dependence on the distance. Should the orientation of the moments not be restricted
to lie in a plane, but instead be allowed to point in any direction in space, then we
would have to carry out a 3-dimensional integral. For this case we would find the
Lorentzian-squared function:

S(q) ∼
1

(q2 + 1/ξ2)2

The bottom line of this discussion is that there is important information hidden in
the line shape of the scattering data. Not merely what the characteristic width is, in
energy or in q, but also in the details of the line shape, be it Lorentzian or Lorentzian-
squared.

As a last mention, in liquids where there is no preferred direction, one frequently
uses the pair correlation function to interpret the scattering data. This pair correlation
function g(r) is given by a Fourier transform of the static structure factor as

S(q)− 1 = 4πn

∫ ∞
0

drr2[g(r)− 1]
sin(qr)

qr
.
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Sumrules, Limiting Behaviors and
Absolute Normalization

We have sumrules on the cross-sections such as the double differential cross-section, on
the scattering functions such as the dynamic structure factor, and we have limiting be-
haviors of some scattering functions. Sumrules are obtained by summing (integrating)
over all possibilities, such as integrating over all possible energy transfers in an inelas-
tic scattering experiment. Sumrules can serve as a check on one’s data, or they can be
used to put one’s data on an absolute scale. The same holds for the limiting behavior
of some functions, these limiting values can be used to absolutely normalize one’s data.

An example of (a not particularly useful) set of sumrules are those that pertain to
the neutron scattering cross-sections directly:∫

d2σ

dΩdE′
dE′ =

dσ

dΩ
,

∫
dσ

dΩ
dΩ = σ.

A much more useful sumrule is the one related to the above set, namely the relationship
between the dynamic structure factor and the static structure factor:∫ +∞

−∞
S(~q,E)dE = S(~q). (E.1)

This relationship can be used to put ones scattering data onto an absolute scale, in
some cases. When doing an inelastic scattering experiment, it is possible to obtain
S(~q,E) apart from some normalizing prefactor that allows us to convert from counts
to the units of S(~q,E). Frequently, especially in the case of experiments on liquids,
one has already measured the static structure factor in some other experiment so that
by performing the integration in eqn E.1 one can determine the normalizing prefactor
by comparing to the known static structure factor.
Even in the cases where the static structure factor is not known, eqn E.1 can still be

used to put one’s data onto an absolute scale. The first way that this can be done is
when S(~q,E) has been determined for very high momentum transfers. In this limit,
we have that S(~q) will no longer oscillate as a function of q but instead it will reach
its limiting value of 1.
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The second way that absolute normalization can be achieved is for the case of
liquids where we can use the so-called f-sum rule:∫ +∞

−∞
S(q, E)EdE =

h̄2q2

2m
, (E.2)

with m the mass of the atoms in the liquid. This sumrule can be used to normalize
one’s data on liquids at low momentum transfer. The energy on the right hand side is
also known as the recoil energy.

Note that we also have the following sumrule, which relates the static susceptibility
χ(q) to the dynamic structure factor:∫ +∞

−∞

S(q, E)

E
dE = πχ(q) =

Ssym(q)

2kBT
. (E.3)

As mentioned, the static structure factor has the limiting behavior:

lim
q→∞

S(~q) = 1.

This relationship is a direct consequence of the fact that we cannot expect any con-
structive interference to originate from neighboring atoms when we probe the system
using very short probing wave lengths. When our scattering is properly normalized,
S(~q) should reach the value of 1. Therefore, we simply obtain the limiting value from
our data in terms of counts, and we have obtained our normalizing factor.

In liquids, we also have the low-q limiting behavior of S(q) which is given by

lim
q→0

S(~q) = nkBTχT =
cp/cv

nmc2
, (E.4)

with χT the isothermal compressibility of a liquid with number density n, c the adia-
batic speed of sound, and cp and cv the specific heats at constant pressure and volume,
respectively. In principle, eqn E.4 can be used to put one’s data onto an absolute scale,
in practice such a normalization will not be very accurate, although it may still be
accurate enough for one’s purposes.

Another very useful relationship is the detailed balance condition:

e−E/kBTS(~q,E) = S(~q,−E). (E.5)

This relationship is used to check the quality of one’s data, such as whether there is
a potential monitor correction lurking in the data correction procedure. Of course,
this relation cannot be used to put one’s data onto an absolute scale, but one should
always try to use it to double check one’s data correction procedures.

The above sumrules are very useful in scattering by liquids and amorphous mate-
rials, but in solids they are not as useful since one has to reach much higher q-values
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before the limiting behavior will be reached. However, we still have some tools at our
disposal to put our data onto an absolute scale. We can use the fact that neutrons
are scattered coherently, incoherently, and (sometimes) through the magnetic cross-
section, to our advantage. For example, suppose that we want to put the coherent or
magnetic cross-section onto an absolute scale for a system that also scatters incoher-
ently. We employ the following scheme.

We first measure the incoherent cross-section (d2σ/dΩdE′)incfor some q-value where
we do not expect any coherent scattering, such as in between Bragg peaks. Incoherent
scattering tends not to extend very far in energy, so that we can easily perform the
following integration: ∫

(
d2σ

dΩdE′
)incdE

′ =
σinc

4π
.

We simply look up the expected incoherent cross section per chemical formula unit
σinc in a table, and we have our sought after absolute normalization factor since this
factor will be the same for the incoherent, coherent and magnetic cross-section.

We could use the same trick for the magnetic cross-section at temperatures where
the system behaves as a paramagnet, that is, a non-ordered collection of magnetic
moments. For paramagnetic scattering on a system of N magnetic moments of spin S
we have the following sum-rule:

(
dσ

dΩ
)paramagnetic = N

2

3
(γr0)2[

1

2
gF (q)]2e−2W (q)S(S + 1).

In here, (γr0)2= 0.291, g is the Landé g-factor (which is 2 for most transition metals),
F (q) is the magnetic form factor and e−2W (q) is the Debye-Waller factor. For instance,
when this relationship is employed at low-q values for a system where the magnetic
moments are associated with transition metals we would find:

(
dσ

dΩ
)paramagnetic = 0.194NS(S + 1).

Conversely, when we have normalized our system using the incoherent cross-section,
we can use this normalization to fathom the size of the magnetic moments. In the
magnetically ordered phase we can use the nuclear scattering to normalize our mag-
netic scattering. We can do this by direct comparison of a single nuclear Bragg peak
and a magnetic Bragg peak, provided we know what atoms contribute to the nuclear
Bragg peak. Most of the times, the latter will be known.

In order to perform the above absolute normalization of a magnetic Brag peak,
we do the following. We first measure a longitudinal and transverse scan of a nuclear
Bragg peak that occurs at roughly the same scattering angle as our magnetic peak of
interest. We then integrate the scattering over these two scans to get an overall count
rate for the nuclear reflection, given our spectrometer setup. Of course, the count rate
will be influenced by the spectrometer resolution function, such as the out-of-plane-
resolution and by the size of our detector, and by the masks we employed.
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Next, we measure a longitudinal and transverse scan of our magnetic Bragg peak,
and we integrate to obtain the countrate. Since both the magnetic and nuclear Bragg
peak will have been measured under virtually identical spectrometer resolution func-
tions, we can take the ratio of the two peaks as an accurate measure of the relative
strength of the magnetic and nuclear scattering. Since we know the strength of the nu-
clear peak (a prerequisite for employing this method) in terms of the scattering lengths
b that contributed to this peak, we can now infer the magnetic scattering lengths from
the ratio of the two peaks.
As a last mention in this appendix, we can verify our absolute normalizations by

comparing our results to that of a transmission measurement. When we measure what
fraction of the neutrons are not scattered by the sample, then in principle we have the
same information as we have coming from our absolute normalization efforts. We must
be a little careful in measuring the transmitted fraction, and we must be sure to have
corrected our scattering for attenuation effects. The best way to measure the trans-
mitted fraction is to measure the detector countrate when positioned in the straight
through beam (with perhaps an attenuator in place), then to remove the sample, and
measure the count rate again. The ratio of these two measurements yields the trans-
mission factor.

The ratio of transmitted neutrons depends on the orientation of the sample in the
case of solids. Therefore, when we do a transmission experiment on a solid, we should
think carefully about the orientation of our sample and choose an orientation that
corresponds to some scattering, but not to a Bragg peak. In liquids of course, the
orientation of the sample does not matter.
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Alignment of a Reflectometer

In order to obtain reliable data on an instrument, we must make sure that the instru-
ment is aligned. This appendix details the alignment procedures for a reflectometer.

F.1 Reflectometer Alignment

The principle in aligning a reflectometer is in one aspect much like any other scatter-
ing instrument and in another quite different. As with any instrument, one will always
work from upstream (the source end) to downstream (the detector end). The major
difference in the case of the reflectometer, however, is that- because of the necessity
of shaping the beam with narrow slits the actual beam position is not fixed and it is
therefore necessary in general to center the reflectometer in the beam once shaped. It
is the narrow beam shape that lends the reflectometer its requisite angular accuracy
at very small angles.

Before detailing a step by step procedure (7 steps), we first give a general descrip-
tion in order to, hopefully, add a little insight and clarity to the process. We use the
relfectometer at MURR as our example. The neutron reflectometer at MURR is similar
to those at other continuous source facilities. Neutrons are extracted from the reactor
through an open beam tube that illuminates a monochromator with a wide spectrum
of neutron wavelengths. Ours uses as pyrolytic graphite (PG) monochromator to select
out a narrow wavelength beam centered at lambda=2.35 Å. This is achieved using the
(002) reflection of graphite which has a d-spacing of 3.35 Å. The positioning of the
monochromator is set and this procedure will begin assuming that the monochromator
is in good alignment.

From here, the idea is to collimate the beam using two slits located between the
monochromator and the sample. The smallest beam divergence can be obtained when
these two slits are separated from each other as far as possible. For this reason, the
first slit (monochromator slit, Sm) is positioned within the biological shielding, up-
stream from the secondary shutter. The second slit (sample slit, Ss) is positioned on
the optical bench as near to the sample as possible.

The alignment begins by extracting a beam through the monochromator slit while
positioning the sample slit so as to maximize beam intensity. Now, it is important that
the center of rotation for the detector arm (and for the sample rotation stage which are
one and the same) is positioned directly beneath the now extracted beam. In general,
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this positioning will be slightly different each time there is a change upstream from
the sample, though in practice the sample slit position should be fairly reproducible,
e.g., when changing sample slits.

The beam onto the sample is defined at this point for the experiment, but in order
to control the experimental background we use two additional slits downstream of
the sample. These slits will allow the detector to accept neutrons reflected from the
sample while rejecting those scattered by the air. One (guard slit, Sg) is positioned
immediately after the sample and the other (detector slit, Sd) is positioned immedi-
ately in front of the detector. The purpose of the detector slit is, essentially, to define
the detector size since we want this to be identical to or very slightly larger than the
beam size in order to eliminate the need for detector convolution and to reduce the
overall noise. The guard slit minimizes the amount of stray neutrons that scatter off
of the cryostat (for example) and reach the detector. Again, this slit is selected to be
just bigger than the size of the main beam.

The final piece to adjust before moving on to the sample is the borated poly (B-
poly) background shield. Because the slits and shielding are imperfect at blocking
neutrons, it is useful to add an additional neutron absorber around the beam as it ex-
its the biological shielding. We have fabricated an assembly for this purpose consisting
of two blocks of B-poly held together with spacers in between. The assembly is then
attached to a positioner, which helps with getting the slot between the two B-poly
blocks lined up with the beam. Having reached this point of the alignment procedure,
one is ready to mount and align one’s sample. Before doing any of this, it is important
that one makes good choices pertinent to a particular experiment, i.e., choices for slit
widths.

Before beginning the alignment, one needs to remove slits from any position that
are intended to be changed, as well as all the slits downstream from there. We now
detail the spectrometer alignment procedure step by step.

Reflectometer alignment procedure:

1. Setting the monochromator slit:
If the slit that is previously put in place at the Sm position is suitable for the exper-
iment, then this step can be skipped; it requires some steps that we prefer to avoid
having to do very often. If not, however, here is what needs to be done. The Sm slit
is mounted on the upstream end of a (lead) collimator, which is housed within the
biological shielding just upstream from the secondary (pneumatic) shutter. The first
thing to do is to close the main beam shutter: this primary (rotary) shutter needs to
be closed by the on-duty operations crew in the control room. The shutter has to be
opened (by someone from operations) on a Monday, so plan ahead.

With the primary shutter closed, one will have to remove the secondary shutter as
the collimators (there are two of them) do not fit through the opening in the shutter.
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This means unbolting it and lifting it out. Then, one will need to pull out the first
(Masonite) collimator. Be careful, though, because the monitor detector is inserted
into the Masonite housing of the collimator and will not pull out directly with the
cabling attached to the monitor. Therefore, one must pull the monitor out; the easiest
way is to turn off the power supply to the monitor, detach the cable from the monitor
detector, and pull the Masonite collimator out with the monitor detector inside.

Next, one will pull out the lead collimator. This requires three tools that are spe-
cific to the job. One is a plastic base that fits where the Masonite collimator used to
be before extraction. Its function is to prevent the lead collimator from dropping off
of a lip inside the shielding since this could easily damage the lead given its softness.
Another tool is a long handle that bolts to the collimator; this requires the third tool
which is a long handle (∼ 30”) rod with an Allen key head on the end. Once the han-
dle is attached to the collimator, it can be carefully pulled out. Then, the easy part is
to bolt the (appropriately chosen) slit onto the upstream end of the lead collimator.
There is a unique set of slits for this slit position, whereas the other three slit posi-
tions are interchangeable. Also, note that the internal dimension of the lead collimator
itself is 2mm so that any slit wider than this will not be of use unless alterations are
made to the collimator itself. There is an adjustable (rotary) slit that is available and
operated through the control software, but it presents problems at small slit widths
because of parallax. It is, in general, best to use fixed slits whenever possible. Finally,
the extraction process is reversed in order to replace the two collimators in position,
keeping in mind the Monday rule for having the shutter opened by the operations
group.

2. Finding the beam:
If one has not changed the Sm slit then it may not be entirely necessary to follow
this step, although it is a good exercise. The detector needs to be pulled out of the
detector box, together with its B4C cylindrical housing. To do this one must turn off
the power on its power supply before the cable can be detached. After re-attaching
the cable once its out of the detector, place the detector on the in the middle of the
sample table with the detector as close to the middle of the transverse direction as
possible. One will need to insert some attenuators in the beam to prevent the detector
from being saturated. Now scan the detector (i.e. the sample translation; str) in order
to find the center of beam. Drive the detector to this center position.

3. Positioning the sample slit:
Next, the selected sample slit is placed at the sample slit position. With the detector
at the position determined in step 2, the sample slit is translated through the beam
while noting where the intensity sets in and where it drops off. This procedure should
be repeated, after which the sample slit is moved to the midpoint. At this midpoint,
the extracted beam coincides with the position of the sample, to be inserted later.

4. Centering the reflectometer:
Next, the detector and B4C housing are placed back in the detector box, making sure
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not to detach the power cable with the power supply turned on. Now, the detector arm
(tth) is scanned and moved to the peak position. One needs to identify the assembly
for aligning the reflectometer; it consists of a plate that mates with the sample table
and it has a slit holder (and most likely already a slit in it) that is offset from the
center. The plate has to be mounted on the sample table so that the slit is in line with
the beam direction. A narrow slit needs to be inserted should there not be one already.

The procedure form this point is an iterative one. The idea is that if the axis of
rotation of the detector arm (and the axis of rotation of the sample) coincides with the
center of the beam, then one should be able to find the beam with the alignment slit at
some forward facing angle and at an angle exactly 180 degrees from there. Of course,
barring some lightning strike, this is not where one will start after having made alter-
ations upstream. Hence, one will have to translate the baseplate until this condition
is met. By how much? The way to figure this out is to scan theta to find the beam,
to note the peak position, to rotate the sample stage (manually) by 180 degrees, and
to find the beam again. By using a little geometry one should be able to predict how
far and in which direction one will have to move the baseplate in order to achieve the
coincidence condition of the beam and center of rotation. In practice, this will take a
few iterations to get as closely as needs to be.

A word of warning: it is easy to make mistakes. When rotating the sample stage,
one really must do it by hand. Because the reflectometer requires such high precision
at small angles, there is a gear reducer that makes moving large distances exceedingly
slow. The way to do it manually is to disengage the worm shaft from the brass gear in
the goniometer by simply loosening the knurled knob on the goniometer body. Then,
pressure needs to be applied to the motor body while pushing it to the right. One
should now be able to feel the rotation stage free to move. Note where the red mark is
and rotate the stage to that same position relative to the mark 180 degrees opposite.
Now re-engage the worm shaft to the gear. Because the gear is soft and the worm shaft
is hard it is critically important to do this in a way that will not damage the soft brass
gear. One will have to apply gentle pressure to the motor while pushing it to the left
and feeling for the worm shaft re-engaging with the gear. The rotation stage might
shift slightly as they re-engage. One needs to convince oneself that these are engaged
properly before re-tightening the knurled knob. It is important to keep track of where
one is at. If the worm shaft and the motor or engaged in the wrong place one will just
add iterations to the process. Once the coincidence condition has been achieved, move
on to step 5.

5. Positioning the detector slit:
One should use a spreadsheet to calculate the predicted width of the beam both at
the sample and at the detector. This will guide one in what slit size to expect and
to ultimately use for the detector slit and for the guard slit. Now, we will also have
to measure the beam width at the detector. To do this, a small slit is selected (∼ 0.3
mm) and placed in the detector slit holder. In this way, one has limited the effect of
convolving the detector size (which effectively has been made negligibly small) with
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the beam width (which will generally be significantly larger).

Next, the detector arm is scanned and moved to the peak position. From this, the
beam width is determined. The next step is to replace the small (∼ 0.3 mm) slit with
one that is just wider than the beam width that has just been measured. The last step
(of step 5) is to make sure that this slit is well centered in the beam. In order to do
this one will have to translate it and note the rise and drop positions just as how it
was done with the sample slit; following this, the slit needs to be positioned at the
midpoint. If the beam is very wide, one may need to create one’s own slit out of pieces
of cadmium (this is also true for the guard slit, or the sample slit for that matter).

6. Positioning the guard slit:
One can, in principle, use another fixed-width slit at the guard slit position but it is
often useful to use the barndoor slit here, because it is more effective at its job of re-
ducing stray scatter that leads to higher background counts. One also has continuous
control over the height and the width. This procedure is very similar to the position-
ing of the detector slit and the sample slit only now one also has the extra degree of
freedom of adjusting the width. One really should not need to do anything with the
height, in general.

7. Positioning the B-poly shield:
The last step before getting to actually mount one’s sample is to mount and position
the borated poly shielding block. The background levels particularly in the low to
medium q-range require this shielding in order to achieve an acceptable dynamic range.
The B-poly assembly simply bolts to the linear translation stage located above the
secondary shutter opening. Through some trial and error, one will need to rotate and
translate the assembly in such a way that the beam passes through the spacing between
the two B-poly blocks, preferably with the west-most block (this should be the larger
block and it should be on the left when facing the beam opening) not quite cutting
the beam. One should pay attention to the detector rate before mounting the B-poly;
one should get all of the counts back unless the spacers are too small, in which case
one will have to adjust them.

F.2 Sample Alignment

Aligning the sample is pretty straightforward compared to aligning the instrument.
The procedure outlined below is assuming a simple open air experiment. The essential
features remain the same but, of course, mounting the sample will certainly vary de-
pending on what sample environment, e.g. cryostat or humidity chamber, one might
need for the experiment.

Sample alignment procedure:

1. Zeroing the axes:
In order to give oneself a good starting point, it pays dividend to line up the sample
rotation (th) and detector arm (tth) either at their last known zero positions (i.e. if
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one just completed the reflectometer alignment, these should already be known), or
by eye, or to the hardware zero. Next, the detector arm is scanned through the beam
and set to the position of the center of the peak. This center is then encoded to be
the new tth zero (”set th 0”).

2. Mounting the sample:
There are two different options for mounting the sample. Select the one that allows
usage of a clamp, if possible. Use the smaller clamp if possible. If it is not possible to
clamp, then one can use the very smallest amount of vacuum grease that will hold the
sample onto the mount. Next, the sample and holder are placed on the goniometer
stage and bolted in place.

3. Locating the surface of the sample:
The sample is scanned through the beam with the detector in the straight through po-
sition (i.e. the detector is at the zero position that was set in step 1). One will have to
move pretty far, such as ±10 mm in the sample translation (str). Both sample holders
have a sheet of cadmium mounted to the back of them to help identify features in this
profile as it will be the best at attenuating the beam. One may be able to identify steps
in the translation profile that correspond to the aluminum holder and the aluminum
backing plate (with the cadmium as the meat of the sandwich). If the starting theta is
too far off, then these features may all be too rounded to identify without ambiguity.
Once the best assessment of the sample surface position has been made, one can move
to this position.

4. Cutting the beam:
Now that the surface of the sample has been identified, we want to get the surface
as parallel to the beam direction as can be. Because this process affects where ex-
actly the best str position is, we will ultimately once again use an iterative process
to hone in on the best str, th, and ch. In this step, one will rock the sample theta
about the beam. One may have to play around a bit with the scan range that one is
using. Once this rock has been completed, one rotates the sample to the apex position.

5. Reflection peak:
To further hone the theta positioning, we move to a 2theta-theta position away from
the main beam. There is a tradeoff here. Going to higher 2theta-theta gives one better
accuracy, but the counting times quickly become unacceptably long. A 2theta angle
on the order of 0.5-1o is a typical choice. Next, theta is rocked about half of the 2theta
position. At the end of this rock, one moves the motor to the center position. This
position is encoded to be exactly at half the 2theta position while noting this adjust-
ment in one’s log book. This scan and the tilt scan in the next step will require some
longer counting times than the main beam scans for obvious reasons (fewer counts).

6. Sample tilt:
Next the tilt angle (ch) is scanned and the tilt angle is set to the center position and
encoded as such. It is not at all uncommon that the tilt direction is very broad but
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in some cases it can be important. It is always good practice to check it at the very
least.

7. Rinse and repeat:
Well, okay, not rinse, but repeat steps 3 through 6 until one is satisfied that all axes
are reproducible within the instrumental resolution. Once they are, then one is ready
to perform the experiment.



Appendix G

Alignment of a 3-Axis Spectrometer

In order to obtain reliable data on an instrument, we must make sure that the instru-
ment is aligned. This appendix details the alignment procedures for a 3-axis spectrom-
eter. The alignment of a 2-axis spectrometer is the same as that of a 3-axis one, with
some steps missing.

G.1 3-Axis Spectrometer Alignment

The following are the basic steps for aligning a 3-axis spectrometer. The most impor-
tant thing to remember when aligning a spectrometer is to never trust the alignment
of the previous user.

1 Monochromator crystal angle:
First, drive the monochromator to the energy you want to align at using the soft-

ware controls, then put the desired monochromator-sample collimation in place. Next,
rock the monochromator angle θm. For this, use the monitor as the signal (this might
require physically switching cables on some spectrometers and plugging the monitor
into the detector socket) and count for a fixed number of seconds. Because the mon-
itor spans a fairly large area, it is often a good idea to put a small mask in front
of the monitor, centered on where the beam center should be. If possible, move the
monitor out towards the sample for better definition (especially when using a focusing
monochromator). Record the center of mass and peak position of the rocking curve.
Drive θm to the center of mass. Replace any switched wires, and switch the way counts
are collected to a fixed number of count on the monitor for the rest of the alignment.

2 Offsets in 2θm and scattering angle θ, part 1:
To determine the zero offsets in 2θm and scattering angle θ (referred to as 2θm,0 and
θ0) a powder pattern has to be measured. For this, the analyzer has to be removed,
and 2θa should be driven to 2θa,0. If the analyzer arm zero-offset angle 2θm,0 is not
known, drive 2θa to the approximate zero angle position ’by eye’. Remove the colli-
mator between the analyzer and the detector. Next, place an attenuator in the beam
to avoid saturating the detector, put a tight collimator in between the sample posi-
tion and analyzer position, and rock θ through the straight through beam. Drive θ to
the so-determined straight through beam position, and place a fairly tight collimator
between the analyzer position and detector. Now rock 2θa. Drive 2θa to the center
of mass, and replace the sample-analyzer and analyzer-detector collimators with the
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Fig. G.1 A standard powder is a powder for which the lattice spacings are known to high

accuracy, such as the silicon powder shown here. Standard powders tend to be small in

diameter and tall. This reflects that we care about the angular divergence of the beam in the

horizontal plane, but that the vertical divergence is not very important at all.

ones to be used in the experiment.

3 Offsets in 2θm and scattering angle θ, part 2:
Remove the attenuator and place a standard powder on the sample table (Fig. G.1).
If the spectrometer does not have a ready-to-go callibration routine such as available
in SPICE, then do the following steps. Do a quick calculation where (roughly) in θ the
powder peaks are expected, and measure about 4 such peaks. In principle it can be
done with 2 peaks, but the accuracy of the alignment increases with increased number
of powder reflections. Set up a set of θ-scans to cover the expected powder peaks and
go for coffee. Determine the peak positions for each reflection and use a least squares
method to determine θ0 and 2θm,0 (see below on one way on how to do this). Encode
2θm,0 and θ0 into the software and calculate the incoming neutron wavelength. Repeat
one scan on a powder peak to ensure that the zeroes were put in with the correct signs.

4 Offset in θa:
Replace the powder by an incoherent scatterer, such as a vanadium rod shown in
Fig. G.2. Some people use a nice big single crystal Bragg peak instead of vanadium,
but this leads to results that are slightly off. However, it is not always possible to
use vanadium, in which case one can use the incoherent scattering by the sample (if
any), or the incoherent scattering of a Ni-powder or an ice cube. If all this fails, then
a Bragg peak provides the next best thing. Put the analyzer in place. Drive θ to a
fairly large angle (to avoid the increased background at small angles), bearing the
W-configuration in mind for a focused setup. Drive 2θa to the angle corresponding
to the incoming neutron wavelength [λin = 2danalyzer sin(2θa/2)], and rock θa to find
the center of mass. This determines θa,0. Drive θa to the center of mass and encode θa,0.
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Fig. G.2 A thin vanadium rod is placed at the center of the sample table to measure the

energy resolution. Since vanadium scatters equal amounts in all directions, the mounting

of the vanadium can be done by eye in an ad hoc manner as amply demonstrated in the

mounting used here.

5 Offset in 2θa:
For the next step, make sure that 2θa and θa are operating in half angle mode (i.e.,
if θa moves by five degrees, 2θa should move by ten). Do a θa-2θa scan to find the
maximum (center of mass) of the vanadium scattering. This tends to be a rather long
scan. Once the scan is completed, drive to the center of mass. This point corresponds
to λin = 2danal sin([2θa − 2θa,0]/2). Encode 2θa,0.

6 Energy resolution function:
It might be useful to measure the energy resolution for the fixed initial or final wave-
length to be used in the experiment. Use the vanadium sample for this (Fig. G.2),
and stick the filters on the spectrometer (if using any). Do an energy scan around the
elastic channel, either in fixed initial or fixed final energy mode.

7 Make notes of the physical scales:
Most triple axis spectrometers have scales on the motors. If so, read off the scale values
corresponding to the values encoded in the computer. By checking the offsets between
the scale values and the computer values about once a day, it is possible to spot a
misalignment quickly. Misalignments during the course of an experiment occur quite
frequently (at least more frequently than wanted). A motor may have lost some steps,
an arm may have run into a dewar etc. Stuff happens.

The following is a recipe for determining 2θm,0 and θ0 from the powder peaks. The
quickest way is to do a linear least squares fit. For this, a guess for θ0 has to be made,
but this can be obtained from the rock of θ through the straight through beam. If
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Fig. G.3 Shown is a close up of a hardware scale on a triple axis spectrometer. To utilize the

hardware scale readings, simply keep track of the difference between the scale reading and

the angle that the software claims the motor is at. This difference should remain constant

throughout the experiment, independent of the actual value of the angle. If the difference

changes outside of the accuracy of the hardware scale, then a problem has occurred.

this value is larger than 5 degrees, correct the observed peak positions for this value.
We label the peak positions, accurate to within 5 degrees, as θPi where the index i
runs over all the peaks obtained in the standard powder measurement (typically about
5 peaks are measured). The remainder of the correction to the estimated θ0 is now
small enough to do a linear least squares fit procedure. The equation that describes
the observed peak positions reads

λtrue = λ+dλ = 2di sin([θPi −θ0]/2) = 2di sin(θPi /2)−2di cos(θPi /2) sin(θ0/2). (G.1)

In here, di is the lattice spacing of the ith powder reflection. Note that in the above
equation we have made use of the fact that cosθ0=1 given that our initial guess of φ0

is accurate to within a few degrees. This can be rewritten in matrix form for N peaks
as: 

1 2d1 cos(θP1 /2)
1 2d2 cos(θP2 /2)
... ...
1 2dN cos(θPN/2)

( dλ
sin(θ0/2)

)
=


2d1 sin(θP1 /2)− λ
2d2 sin(θP2 /2)− λ

...
2dN sin(θPN/2)− λ

 (G.2)

This equation is of the form Ax = u, with A the 2x N matrix, x the column vector
with 2 elements we are trying to solve for, and u the N -element column vector of
measured outcomes. This equation can be solved by using the transpose matrix AT as
follows:

AT .Ax = AT .u;x = [AT .A]−1ATu. (G.3)

Now that x is known, one can directly determine θ0; 2θm,0 follows from λtrue =
λ+ dλ = 2dmono sin([2θm − 2θm,0]/2).
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G.2 Sample Alignment

When doing inelastic scattering experiments on a single crystal, the crystal needs to be
aligned. This means that we need to know the orientation of the crystallographic axes
with respect to the scattering plane, and we need to orient our crystal in such a way
that the desired axes are in the scattering plane. This can sometimes be problematic
since, unlike the beryl crystal shown in Fig. G.4, not all crystals have facets that reveal
their crystal symmetry.

Fig. G.4 The unit cell symmetry is easily visible in this 6” chunck of beryl on display at

the Denver Museum of Nature & Science.

In order to align a single crystal that has unhelpful facets, we need to know the
length of the crystallographic axes and the symmetry of the unit cell. This informa-
tion will invariably be available to the user because powder experiments will have been
performed before someone decides to grow a single crystal. One very helpful piece of
equipment that greatly facilitates the alignment of a crystal is a neutron camera with
a computer display. Such a camera can directly display neutrons hitting the camera,
with the display not only showing whether a neutron has hit the camera, but also
whether a great many neutrons hit it (as in a Bragg peak), or just very few.

The advantage of neutron cameras is that the span a very large solid angle, so that
any Bragg peak anywhere within a large angular range will be registered. Typically,
one positions the camera close the the sample, and then plays around with the ori-
entations of the sample until a peak appears on the camera. Then the orientation of
the sample is fine tuned, and the camera pulled back from the sample, until we have a
Bragg peak that is roughly within the scattering plane. Next, we remove the camera,
and drive our standard neutron detector to the position where the camera was, and
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we fine tune the scattering angle and the sample orientation.

Once we have done this, knowing that the orientation of this particular Bragg
peak is not perfect yet, we will have to adjust the tilt under the sample to make sure
that the incident and the scattered beam lay within the plane scattering plane of the
spectrometer. We would like the Bragg planes to coincide with one of the tilt axes of
the sample table, so we will (likely) have to physically rotate our sample with respect
to the surface of the sample table. To do so, turn off the beam, and look carefully at
the sample. The Bragg planes that reflect the neutrons in a mirror-like geometry are
oriented such that the neutrons are reflected as if bouncing off a mirror. We need to
pick up the sample and reposition it on the sample table such that these planes are
parallel with one of the tilt axes of the table. So do this, pick up the sample, roughly
guess by how many degrees the sample was reoriented when put back on the table, and
go back to the controls, open the beam, and rotate the sample the opposite direction
and wait for the peak to reappear.

Again, do an alignment scan of the scattering angle and the sample rotation angle,
and drive the motors to the point of maximum scattered intensity. Then adjust the
tilt angle under the Bragg planes (think about which of the two tilt angles to change)
until maximum intensity has been found. Then repeat the scattering angle and sam-
ple rotation alignment. When all this is done, we have found one Bragg peak and the
sample is oriented in such a way that the neutrons are deflected into the detector,
while sticking to the scattering plane. From the scattering angle we should be able to
determine exactly what Bragg peak we are looking at, such as the (200)-reflection.

What if we do not have a neutron camera at our disposal? In this case, we will
have to use the standard neutron detector instead. To make our setup as receptive
as possible, remove all collimation before and after the sample, remove the analyzer
and position the detector in a 2-axis configuration. Set the scattering angle so that it
corresponds to a strong Bragg peak. Once all this is in place, then change the orien-
tation of the sample (only 4π angles to cover) until a peak appears in the detector.
Typically one rotates the sample angle over 180 degrees, then- if no peak appears- one
repositions the sample with a change in tilt of 5-10 degrees, and rotates the sample
angle over another 180 degrees until a signal appears in the detector. Once a peak
has been found this way, then one aligns on this peak in exactly the same way as the
procedure we employed when we used a neutron camera.

Interestingly enough, the first peak is the easiest to find, even for a shapeless
crystal. Next, we have to find a second, independent Bragg peak so that we know the
orientation of the crystallographic axes. Select a peak of choice, set the scattering angle
to correspond to this Bragg peak, and rotate the sample angle and keep one’s fingers
crossed. Likely, no peak will appear. When this happens, one will have to change the
tilt under the sample. Do this by changing the ’other’ tilt angle by 5 degrees, and start
rotating the sample again. Of course, if one has a neutron camera, then first try to
find this second Bragg peak on the neutron camera by placing this camera between
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the detector and the sample.

If one is lucky, then the second Bragg peak will appear within the range of tilt
angles that the spectrometer allows. If not, then one will have to change the mount-
ing of the crystal, and change the orientation as best as one can in order to induce
a larger tilt angle. After this, put the sample back on the sample table, realign on
the first Bragg peak, and then repeat the procedure hoping to find the second Bragg
peak. All this can be a time consuming and a somewhat frustrating experience, but
there is no other way around it. Eventually, the second Bragg peak will be found. It
is a particularly good exercise for developing one’s inner strength trying to orient a
shapeless sample that has monoclinic or triclinic symmetry.

Now that two Bragg peaks have been found, one should try to position the sample
on the sample table in such a way that the tilts under the two Bragg peaks are minimal,
say less than 5 degrees. Once this is done, then put all the collimation back in and find
the points of maximum intensity for both Bragg peaks, and tell the computer what
scattering angles, sample rotation angles and tilt angles these two peaks correspond
to. Once this has been punched into the computer, then the sample is oriented.

We should check on the orientation by instructing the computer to drive to another
Bragg peak, not one of the two we used for alignment, and make sure that our detector
actually detects a peak where it is supposed to find the peak. If the expected peak is
not where it is supposed to be, then you have our sympathy.
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Higher Order Contamination

When contamination from the monochromator onto the monitor cannot be avoided by
either using a monochromator reflection with forbidden second order contamination,
or by employing a velocity selector, then one should simply to measure the contam-
ination. By placing well characterized absorbers of varying thickness in front of the
monitor, one can determine the contamination. We detail this procedure for a neutron
scattering experiment.

In a neutron scattering setup for a given monochromator reflection, one measures
the monitor count rate R(λi) as a function of incident energy Ei, corresponding to an
incident wave length λi (see eqn A.1 in Appendix A). Because of higher order neutrons
also reaching the monitor, this count rate R(λi) is given by

R(λi) =
N∑
j=1

φ(λi/j)(1− e−Cλi/j) = C
N∑
j=1

φ(λi/j)(λi/j). (H.1)

In here, C is a measure of the efficiency of the monitor, which is a small number by
design. φ(λ) is the neutron flux for neutrons of wave length λ that will make it to the

monitor. The constant C will be eliminated since only the ratio φ(λi)/
∑N
j=1 φ(λi/j)

is needed to perform the monitor correction.

Next one places a thin piece of neutron absorbing material before the monitor,
such as a tin foil of known thickness, and one repeats the measurement of the monitor
count rate. Subsequently, one doubles the thickness of the foil, and so on, until one has
at least as many foil measurements (m) as there are higher orders of contamination
present in the incident beam (m = N). For m layers of foil of thickness d, the monitor
count rate is given by

R(λi,m) = C

N∑
j=1

φ(λi/j)(λi/j)e
−mb/j (H.2)

with the foil parameter b is given by the number density of the foil nf , the absorb-
tion cross-section of an atom in the foil σabs at neutron energy Ei, and its thickness:
b = dnfσabs(Ei).

1

1The absorbtion cross-section depends inversely on the wave length of the neutron, or equivalently,
the cross-section is proportional to 1/v. An almost correct way to think about this is that the longer
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All measurements can be written in matrix form as Mφ(λi/j) = R(λi,m)/C, with
the matrix elements given by

Mj,m = (λi/j)e
−mb/j . (H.3)

Next one finds the sought-after ratios for each λi by applying the least squares for-
malism:

φ(λi/j)/φ(λi) = (MT .M)−1MT [R(λi,m)/R(λi, 0)], (H.4)

with MT the transpose of the matrix M . The results of such a set of foil measurements
are shown in Fig. 9.11. A final word of warning: the foils will get highly activated
because of the neutron capture events.

a neutron spends in the nucleus of the scattering atom, the more chance it has of being absorbed.
Thus, when we halve the wave length of a neutron, we also halve the absorbtion cross-section. This
process is behind the ∼ 1/j dependence in the exponents of eqns H.1 and H.2.
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Attenuation Corrections

We use computers to carry out attenuation corrections numerically. The principle is
easy, the implementation is a little more difficult, especially for unusual geometries
such as a hollow annulus. We recommend Varley Sears’ original publication, such as
V.F. Sears, Adv. Phys. 24, 1-45 (1975).

The fundamental quantity for calculating the attenuation factors is referred to as
H1(~kinitial,~kfinal) by Sears, and as the transmission factor by xray scattering people.
This transmission factor can be cast in a form suitable for numeric computation:

H1(~kinitial,~kfinal) =
1

V

∫
V

d~re−nσ(kinitial)L(~r,k̂initial)−nσ(kfinal)L(~r,k̂final). (I.1)

This equation is actually very straightforward. It states that scattering can originate
from any point within the sample, and hence, we have to integrate over all points
within the sample. The paths that the neutron will have to traverse depend on the
point of scattering, and on the initial k̂initial and final directions k̂final. These paths
are weighted by the chance of scattering and absorbtion, as contained in the product
nσ, with n the number density and σ the sum of the scattering cross-section, and the
energy-dependent absorbtion cross-section.

When we correct for sample attenuation, we divide the measured counts by the cal-
culated factor H1(~kinitial,~kfinal) for every scattering angle and energy transfer. When
we wish to subtract an empty container contribution from our scattering data, we
multiply the empty container spectra by this factor so that we can pretend it was
filled with a sample.

Calculating the attenuation factor H1 is simply a matter of geometry. For each
point within the sample, and for each scattering direction, we have to calculate the
length of the path from the point of entry to the point of scattering, and we have to
calculate the length of the path from the scattering point to the point of exit. If the
sample absorbs, then we also have to remember to make sure we put the proper en-
ergy dependent absorbtion cross-sections in. Then we integrate over all possible points.
Then we are done.
This correction can be calculated exactly for a slab geometry (that is, it can be calcu-

lated analytically), but it has to be calculated by computer for other geometries. For
single scattering (which is what the ’1’ in H1 signifies), we only have to calculate the
scattering in a cross-section of the sample, we do not have to integrate over the sample
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Fig. I.1 Shown is the calculated attenuation for a sample that does not absorb, but that

scatters the neutrons with a scattering length of 0.2 cm−1 (nσ= 0.2 cm−1). When this sample

is put in a slab geometry with 0.5 cm thickness, and when the slab is oriented perpendicular

to the beam, then the attenuation factor will drop from 0.9 at small scattering angles to 0

at 90 degrees (black line). When the same sample is put in an annular geometry with inner

radius 1cm and outer radius 1.25 cm, then the attenuation factor (horizontal line) becomes

angle independent.

dimension perpendicular to the scattering plane. On the other hand, when we calculate
multiple scattering, we do have to take this third dimension into account. Note that
multiple scattering calculations are somewhat similar. We would still average over all
possible scattering points, and perhaps even force more than one scattering event to
take place in the sample, and we would still weigh all scattering events by the attenu-
ation based on the path lengths. The only real difference is that in multiple scattering
we would also weigh all paths by the likelihood of scattering from, e.g., ~kinitial → ~kfinal,
whereas in calculating the attenuation correction we weigh all events equally.

We give some examples for slab geometry and cylindrical geometry. Suppose we
have a sample that does not absorb, but merely scatters. We can place this sample
inside a slab, or we can put it inside of a cylinder, or we can even put it in the beam
as an annulus (a hollow cylinder). In Fig. I.1 we show the calculated attenuation for a
sample that scatters roughly 10% of the incoming neutrons, both for a slab and for a
cylindrical (annulus) geometry. This figure demonstrates that a cylindrical geometry
would be preferential in this case, unless we are only interested in very small scattering
angles. It also demonstrates that if we were to use an empty container measurement
as our background data, that we would over subtract. For this case, we should first
multiply the measured container data by the calculated attenuation factor. Overall,
this figure demonstrates that when our sample is not absorbing, we should have no
problems in correcting our data.

Next, we look at the case for a sample that not only scatters, but also absorbs



280 Attenuation Corrections

Fig. I.2 Shown is the calculated attenuation for a sample that absorbs and scatters the

neutrons. For this example we have set the final neutron energy at 5 meV while varying the

incoming neutron energy. The curve has been calculated for a scattering angle of 25 degrees

when the sample is in a slab geometry of 0.5 cm thickness. The scattering length was set at

0.1 cm−1, and the absorbtion length at 0.3 cm−1 for 25 meV neutrons. Note the increased

attenuation caused by the absorbtion of neutrons for neutrons that enter the sample with low

energies. Also note that this sample does not scatter a lot, so even though the attenuation

factor is always significant, we do not expect insurmountable problems when it comes to

calculating multiple scattering corrections.

the neutrons. We show the calculated attenuation as a function of energy transfer for
one particular scattering angle in Fig. I.2. It should be clear from this figure that we
absolutely will have to correct our scattering for the attenuation factor if we are to
have any hope of obtaining line shapes out of our scattering experiment. Given how
straightforward it is to punch eqn I.1 into a computer, there is no reason to not carry
out this attenuation correction. The correction is just as easy to calculate for time of
flight instruments as it is for reactor source instruments. The attenuation correction
has to be calculated for every scattering angle, and for every energy transfer, but that
is what computers are good at.



Appendix J

Solutions to Selected Exercises

Exercise 2.2
The maximum amount of momentum that can be transferred is when the neutron

bounces back, or scattering over a 180 degree angle. The amount of momentum trans-
ferred is twice the momentum of the neutron: h̄q = h̄kinitial.

Exercise 2.3
When there is music playing in one room, and the door is open, it is easy to hear the
music everywhere in an adjacent room. The sound waves diffract through the door
opening, which makes sense since a typical wave length of a sound wave is 1 m, com-
parable to the width of the door. Examples for light waves are the diffuse scattering
that occurs when light goes through a small opening, such as a pinhole in a piece of
paper, or the bright diffraction spots when light is incident on a diffraction grating.

Exercise 2.4
The equivalent would be inelastic scattering. For instance, when we wish to excite a

sound wave in a crystal, then not only has the period of our interference pattern match
the wave length of the sound wave, the oscillation in the amplitude of the interference
pattern has to match the natural oscillation given by the frequency of the sound wave.
Thus, the scattered wave has to have a slightly different wave length (frequency) than
the incoming wave so that we can set up this beat frequency.

Exercise 3.2
a) see table.
b) Water and heavy water have the same density, so we can work with the scattering

lengths per molecule rather than the scattering length density. The scattering length
for a H2O molecule is bH2O= 2BH+bO = 2 x (-0.3739) + 0.5803 = -0.1675 10−12cm.
That od a heavy water molecule H2O equals 1.9143 10−12cm. In order to get a mix-
ture with a fraction x of normal water with zero scattering lengths, we have that 0 =
-0.1675 x + 1.9143 (1-x), and hence, x= 0.9195.
c) When this mixture is probed on long wave lengths, it would not scatter since all

the scattered waves would add up with zero total amplitude. This is very useful when
doing SANS experiments. However, when the mixture is probed on much shorter wave
lengths, such as those comparable to the atomic spacings within a molecule, we would
still see scattering since at these short probing wavelengths (the incoherent limit) we
would see individual molecules.
d) The relevant measure is the overall scattering power, which necessarily must be a
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Table J.1 Scattering lengths and cross-sections for biological relevant elements. Note that

1 barn= 10−24cm2. Source: The SANS toolbox.

Element b σcoh σinc

10−12cm 10−24cm2 10−24cm2

H -0.3739 1.757 80.30

D 0.6671 5.592 2.05

C 0.9946 5.550 0.001

N 0.936 11.01 0.50

O 0.5803 4.232 0

F 0.5654 4.232 0.001

Na 0.363 1.66 1.62

P 0.513 3.307 0.005

S 0.2847 1.017 0.007

Cl 0.9577 11.526 5.3

product of how well the individual units (molecules) scatter, times how many molecules
there are in the sample volume.
e) This can be advantageous in two ways. In some experiments we might not be in-
terested in what the proteins are doing, so it is nice if they do not contribute to the
scattering (when using long probing wave lengths). Alternatively, we might be inter-
ested in what the proteins are doing, but the scattering attributable to the proteins
might be hidden in the total scattering of all the components in the system. We can
do two experiments with different levels of deuteration, and we can use one exper-
iment as our background measurement. So we would have one measurements where
the scattering contains the scattering by the (proteins + water + other stuff) and one
experiment that would effectively be the scattering by (water + other stuff). Subtract
the two, and you get the scattering by the proteins.

Exercise 4.1
Hydrogen has a very large incoherent cross-section, and therefore, any material that

contains water tends to scatterer a lot. Therefore, we would like to use very thin sam-
ples such as those contained in a slab geometry. This way, we can use a slab that is
as big as the dimensions of the neutron beam, but we do not have to worry about
multiple scattering too much because of the limited thickness of the slab.

Exercise 4.2
Since the molecules will have random orientations, we should average over all possible
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directions of ~q. A typical term will involve < eiqa cos θ > where the brackets denote
averaging over all 4π directions. Carrying out this averaging we find:

< eiqa cos θ > = (1/4π)
∫ π

0
sin θdθ

∫ 2π

0
dφeiqa cos θ

= (1/2)
∫ 1

−1
d cos θeiqa cos θ

= (1/2)
eiqa − e−iqa

iqa

=
sin(qa)

qa
.

Adding up all 4 terms in the summation yields 2 + 2 sin(qa)/(qa).

Exercise 4.4
The first panel for q = 0.05 Å−1 displays a peak located roughly at 0.2 ps−1. Thus

the slope of the dispersion curve is given by 0.2 ps−1/0.05 Å−1= 4 Å/ps = 400 m/s.

Exercise 4.5
A typical bilayer separation is about 40 Å. Doing neutron scattering on randomly
oriented bilayers we can expect to see this separation as an oscillation in the static
structure factor, very similar to that seen in oxygen and nitrogen molecules. The only
difference would be that the characteristic distance (40 Å) is much larger than in those
molecules (2 Å), and therefore, the period of oscillation will be much smaller, roughly
by a factor of 40Å/2Å= 20. Thus, we can expect a similar pattern as shown in Fig.
4.6, but with the horizontal axis shrunk by a factor of 20.

Exercise 4.6
We would have to do an inelastic experiment at high momentum transfers. We would

choose high momentum transfers since then we are sensitive to individual atoms and
molecules (the so-called incoherent limit), and we would have to do an inelastic ex-
periment since sometimes we will absorb some of the kinetic energy of the atom in its
oscillation, and sometimes we would give the atom some energy. So we expect to see
a broad (in energy) feature when we do these inelastic experiments, and the width in
energy as well as the average position of the peak would give us information about the
characteristic energy scales that determine the motion of the atom or molecule.

Exercise 5.2
Very large lattice spacings need to be probed with large probing wave lengths, which

can most easily be done using neutrons of fairly long wave length. At the same time,
we need to reduce higher-order contamination from reaching our sample, and even
creating unwanted background counts in our sample through multiple scattering. The
best way is to clean the incident beam from higher-order neutrons, which can be done
by placing a Be or a BeO filter in the incident beam, preferably before the incident
beam monitor (why?)
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Exercise 5.3
We use the equation

∆λ

λ
=

∆d

d
+

∆θ

2 tan(θ/2)
,

with ∆λ = 0 for a reactor based diffractometer. Detectors are typically located at θ=
90 degrees, so by plugging in these numbers into the above equation we find ∆θ =
0.002 radians, or about 0.1o. Thus we require a very tight angular resolution. Since
the monochromator crystal is perfect, the angular resolution in controlled entirely by
the acceptance angles of the collimators. So we would like to use collimators of about
0.1o. Likely, the best we can find is 10’ collimators, so we will have to make do with
those. We should still be able to see the peak shift using this set of collimators, but
we would have to measure the entire peak in order to get a reliable estimate of the
average peak position.

Exercise 6.1
a) In order to figure out the symmetry of the unit cell, we need to figure out the

lattice spacing or q-value that corresponds to each peak. To do so, we have to read
off each peak position, and convert to lattice spacing or q-value using the relation
λ = 2d sin(θ/2) = (4π/q) sin(θ/2). Once we have the q-values, we can divide all the
q-values by that of the first peak, and square the ratio. Any peak that is related to the
first peak will have an integer ratio, as explained in the main text. If there are more
than one family, then we would get non-integer ratios. When we do it for the given
pattern in this problem, we find integer ratios for all peaks, and hence, the system
must be cubic.
b) Now that it is known that the system is cubic, we can determine d from any of the
reflections using λ = 2d sin(θ/2).
c) There is more than one atom. This follows from the oscillation in peak intensity. If
there is only one atom in the unit cell, then all peaks should be equally strong, and
we would only see a gradual overall decrease in intensity because of the Debye-Waller
factor.
d) The atoms must be of different species. If the atoms were of the same species, then
we would observe some forbidden reflections such as the (100)-reflection. Since all re-
flections are present, we never get complete cancelation of say, the atoms located in
the center of the cube and the atoms located on the sides of the cube. This can only be
if the atoms are different, scattering the neutron with a different strength (scattering
length).
e) This could be caused by background scattering, scattering by the sample holder,
or by scattering through the incoherent cross-sections of the atoms that make up the
system.
f) When the probing wave lengths get shorter, more and more of the constructive in-
terference pattern will get lost because the atoms have wandered ever so slightly from
their equilibrium positions because of their thermal and zero-point motion.
g) In order to do this, we must identify two reflections that are formally equivalent in
intensity, such as the (400) and (800)-reflections. The difference in intensity between
those two reflections can be attributed to the Debye-Waller factor. We can express the
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ratio of these two reflections as e−(q2800−q
2
400)<u2> from which we can calculate < u2 >.

Exercise 6.4
Grains can have facets that reflect the underling symmetry of the unit cell. When we

tap the holder repeatedly, facets of neighboring grains can align, and as a consequence,
we lose the random orientation of the grains. As a result, we will find that our powder
profile suffers from preferred orientation.

Exercise 6.5
It is cubic. All visible edges are of equal length, only cubic symmetry can accomplish
this. However, as the model structure shows, figuring out the exact space group was
much harder than figuring out the overall symmetry.

Fig. J.1 The structure of garnet might be cubic, but it is still complex. Source: Wikimedia

Commons, author Peter Murray-Rust.

Exercise 7.1
A monochromator reflects neutrons onto the sample. If we were to choose a different
incident wave length, then we would have to rotate the entire spectrometer along with
the change in monochromator take-off angle.

Exercise 7.2
We are only measuring at very small momentum transfers, and hence, we need a ma-
terial with a very large lattice spacing. Typical samples that are being used on SANS
spectrometers are Silver Behenate (d= 58.38 Å) and kangaroo tail tendon (d= 667 Å).

Exercise 7.3
Instrumental resolution functions smear out peaks, including the peak at q= 0. Since

the radius of gyration is related to the slope of the tail of this peak, a broadened peak
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implies a lower slope and therefore, a lower radius of gyration.

Exercise 7.4
Yes. SANS detectors are flat, so what we measure is not the differential cross-section,

but rather the projection of this cross-section onto a flat surface. For instance, for a
disc-shaped element dΩ, we would measure an ellipsoidal shaped element in the de-
tector.

Exercise 7.5
In order to obtain a complete set of SANS measurements the required runs are: trans-

mission and scattering from the sample, transmission and scattering from the empty
cell, scattering run from the blocked beam, transmission run from the empty beam
and the detector sensitivity run from plexiglass (SANS toolbox, Chapter 21).

Exercise 8.1
a) The second derivative of the wave function is a measure of a particle’s energy. Since
there is a jump in energy level between two materials, the second derivative should
reflect this jump. Therefore, the first derivative should be continuous, but the slope
of the first derivative should be discontinuous. By extension, the wave function should
be continuous, and its slope should be continuous.
b) We have freedom of choosing our origin for z= 0, so we do this right at the interface.
We then find two equations that follow from matching the two halves of the wave
function at the interface (z = 0), and their derivatives:

α0 + β0 = α1

−q0α0 + q0β0 = −q1α1.

We use the top equation to eliminate , and we divide the bottom equation by α0 to
find

−q0 + q0

β0

α0
= −q1[1 +

β0

α0
].

Solving for β0/α0 we find
β0

α0
=
q0 − q1

q1 + q0
.

There is no term∼ β1 since neutron do not travel back to the surface inside the medium
since they cannot be reflected from the back of the material since the material is chosen
to be infinitely thick.
c) If q2

0 − β < 0, then q1 will be a purely imaginary number. Writing this number as
q1 = ia we get for |β0/α0|2:

|
β0

α0
|2 =

[q0 − ia]

[ia+ q0]

[q0 + ia]

[−ia+ q0]
= 1.

Exercise 8.6
a) Critical angles are given by sin θc ≈ θc =

√
β/k0 for an air-material interface.
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These angles are very small, and hence, the neutrons have to be incident on the wall
of the tube under very shallow angles. This can only be achieved if the tube is almost
straight.
b) The critical angle is proportional to 1/l0 and hence, it is proportional to λ. Thus,
long wave length (slower) neutrons can be 100% reflected, but faster neutrons will be
transmitted through the wall of the beam tube, disappearing form the beam.
c) 58Ni has two advantages: it has a very large scattering length b and therefore, a rela-
tively large critical angle, and this isotope does not have any incoherent cross-section.
The latter is an advantage because fast neutrons cannot make it down the beam tube
by means of incoherent scattering.

Exercise 8.8
The smallest resolution ∆z we can model in real space is reciprocally related to the

extent of our spectrum in reciprocal space. Thus, (∆z)min = 2π/qmax. For example, in
an experiment where we probe out to qmax= 0.2 Å−1, we have (∆z)min ≈ 30 Å.

Exercise 8.9
The advantage is that we introduce more structure into our reflectivity profile, so it
will be easier to identify various features. The disadvantage is that the way a single,
unsupported membrane behaves in nature might be very different from a bunch of
membranes slapped on top of each other.

Exercise 9.1
The left sketch shows the situation on the left where we scatter at constant scattering

angle. When we vary the incident or final wave length of the neutron (black arrows),
we also vary both the length and direction of momentum transfer (red arrow). We can
rotate the sample to ensure that the momentum transferred will be along the same
crystallographic direction, but we cannot do anything about the change in magnitude
of the momentum transfer. Even for liquids, where direction of momentum transfer
does not matter, we would have this problem.
The sketch on the right shows how we can keep a constant magnitude of momentum
transfer for differing incident or final neutron wave lengths. As long as we choose
our scattering angle correctly, we can keep a constant amount of momentum being
transferred (indicated by the circle). For a liquid we are done, for a crystal we would
need to rotate the crystal to ensure that the direction of momentum transfer with
respect to the crystallographic axes does not change.
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Exercise 9.2
When we cool the crystal down, the lattice will (most likely) contract, with the result
that the Bragg peaks will occur at higher scattering angles. Therefore, we need to wait
until the crystal is cold, and align the crystal.

Exercise 9.3
When we vary the incident energy, the monitor count rate efficiency will also vary;

the monitor will be more efficient for slower neutrons than for faster neutrons. This
variation in efficiency exactly compensates for the pre-factor kfinal/kinitial that shows
up in the connection between neutron counts and dynamic structure factor. Therefore,
our counts will be directly proportional to the dynamic structure factor when we use
fixed final energy, and variable incident energy.
The second reason is that we would like to get rid off higher order contamination. If we
keep the incident energy fixed, then we do not have a lot of choices for fixed incident
energy that allow us to get rid off higher order contamination. In fact, the best we
can probably do is to use Eincident= 14 meV, greatly restricting how much energy the
neutron can transfer to the sample since the neutron cannot give up more energy than
it has.

Exercise 10.3
The discussion about how to make weak ferromagnetic peaks visible applied to Bragg
peaks, and therefore, the exponent would equal one. Also, the ordering is ferromag-
netic (not antiferromagnetic) so that the magnetic lattice coincides with the nuclear
lattice. In other words, why bother with the lattice if it is the same for both magnetic
and nuclear scattering?

Exercise 12.1
We will do the easier to visualize case for which φ0= 0. We use eqn I.1 to calculate

the attenuation factor, the factor by which the non-attenuated scattering has to be
multiplied in order to get the attenuated scattering. The problem is a 1-dimensional
problem, where the volume integral can be replaced by a 1-dimensional integral over
the thickness of the slab. Denoting the scattering angle by θ, and the point of scattering
by x- with x varying between 0 and τ - we find for the attenuation factor (with x the
path length through the sample before scattering and (τ -x)/cosθ the path length
through the sample after scattering provided that |φ| < 90o)

H1(θ) =
1

τ

∫ τ

0

dxe−Σx−Σ(τ−x)/ cos θ.

Carrying out the integration we find for |θ| < 90o:

H1(θ) =
e−Στ − e−Στ/ cos θ

Στ/ cos θ − Στ
.

Doing the calculation for |θ| > 90o we find:

H1(θ) =
eΣτ/ cos θ[e−Στ − e−Στ/ cos θ]

Στ/ cos θ − Στ
.



Solutions to Selected Exercises 289

When we extend the calculation to φ0 6= 0 we find for |θ − φ0| < 90o:

H1(θ) =
e−Στ/cosφ0 − e−Στ/ cos(θ−φ0)

Στ/ cos(θ − φ0)− Στ/cosφ0
,

and for |θ − φ0| > 90o we find

H1(θ) =
eΣτ/ cos(θ−φ0)[e−Στ/cosφ0 − e−Στ/ cos(θ−φ0)]

Στ/ cos(θ − φ0)− Στ/cosφ0
.





Part V

Modules

This part lists 6 modules and a final project that constituted the lab component of the
IGERT neutron scattering course. This part should be skipped, it was merely included
so that we could keep track of what modules were given during the course.





Appendix K

Basic Diffraction Module

Aim: measure microscopic spacings using an interference technique.

Take a look at the figure shown below. In this sketch we see a water wave arriving
at two openings, after which each opening will act as a source of a new water wave.
Given the geometry of this situation, the two newly formed waves will oscillate in
phase since the wavefronts arrive at the two openings at the same time.

1) Come up with an expression that shows the relationship between re-
gions of maximum constructive interference, how much farther one wave
had to travel compared to another (path difference PD) and the wave
length of the original wave that created the two new waves.
In particular, we are looking for an expression that reads PD= f(λ) where f(λ) is some
function of the wave length λ of the original wave.

2) Repeat this exercise, but now for regions of perfect destructive in-
terference.
In particular, we are looking for an expression that reads PD= g(λ) where g(λ) is
some function of the wave length λ.

3) What is the relationship between the radial angle at which we ob-
serve regions of constructive interference and the other parameters of the

Fig. K.1 Water waves making it through two openings will create an interference pattern.



294 Basic Diffraction Module

problem?
We can define the angle Θ as the angle between the direction of the incoming wave,
and the direction of the resultant waves. We measure Θ with respect to the center
of the two openings. Find an expression that expresses PD in terms of Θ and any
other parameter that defines the situation. In particular, find an expression of the sort
h(Θ,...)= f(λ). Assume that the distance between the two openings is much larger than
the width of the individual openings.

4) Repeat exercise number 3) for the case of destructive interference.

5) If instead of water, we had used sound waves or electromagnetic
waves, how would your expressions under parts 3) and 4) have changed?

6) Imagine a wall made up of many, identical openings all spaced the
same distance apart. We would still find an interference pattern, and the
relationships derived under parts 3) and 4) would still hold. Why is this?

7) You have been given a laser pointer that emits light of known wave-
length. You have also been given a grating where the distance between the
openings is unknown. See the figure below for a close up of a diffraction
grating. Shine the laser of the grating, and observe what happens to the
light that passes through the grating. Make a sketch.

Fig. K.2 An electron micrograph close-up of a diffraction grating. Photo by Jocelyn Nee,

www.eecs.berkeley.edu/IPRO/.

8) Observe what happens to the interference pattern when you change
the angle between the incoming light direction and the normal of the grat-
ing. Make a sketch and explain.
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9) Calculate the distance between the scratches based upon the inter-
ference pattern that you are observing.

10) What do you expect to happen to the interference pattern when we
half the distance between the openings? What if we double the distance?
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Counting Chain Module

In the course booklet, the operation of a typical 3He neutron detector has been de-
scribed. That is, a 3He nucleus absorbs a neutron, splits into two charged particles
(a tritium nucleus and a proton); these charged particles ionize the gas so that an
electronic pulse is picked up across the two electrodes of the detector. In this module,
you will get your hands on a detector and tune the electronic settings as you would for
an experiment at an actual neutron scattering instrument when you have discovered
that the counting chain part of the spectrometer does not perform as expected.

The following components are utilized in the counting chain:

• a 3He filled neutron detector tube,

• a high voltage power supply,

• a single channel analyzer,

• a ratemeter,

• a preamplifier,

• cabling (high voltage and coaxial).

In this module you will also be making use of an oscilloscope and a multichannel
analyzer (which is contained within a pc).

1) Neutron detection events reach the instrument control software via a series of
electronic components called a counting chain. Rationalize the relative order in
which the above components should be hooked up in order to deliver the
pulse of the detector to the computer (or equivalently, a ratemeter, for
the purposes of this module). (Note: Complete this part one before leaving the
classroom for the lab.)

2) To save time, the counting chain is set up for you. Inspect the order of
linkage and compare this to your answer from part 1). If the detector is
not connected, do so before powering up.

There is a power switch (red circle in Fig. L.1) to the NIM bin (the rack that
houses all the modules such as the preamplifier) that powers everything except the
high voltage power supply, which has its own separate switch (blue circle). The rateme-
ter provides a quick read out your detected signal. The objective is now to optimize
the settings to get the most neutron counts while limiting any spurious (gamma ray,
etc.) counts. We will do this in the following sections in turn.
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Fig. L.1 The basic setup of the counting chain of a single detector. Note that the order of

the components in the rack does not have to coincide with the logical order of the components

within the counting chain.

3) What are some guiding principles for how one should adjust the high
voltage supplied to the detector?

Fig. L.2 As a neutron source we use a chunk of californium. Needless to say, do not remove

the source from its bucket.

4) Place the detector near to the Californium neutron source, i.e on top
of the paraffin shielded bucket shown in Fig. L.2. As you do so, observe the
signal on the oscilloscope; this will require setting the trigger so that you
can see the predominant pulses coming in. Adjust the high voltage bias of
the oscilloscope accordingly and mark down your optimized value.

5) Now that we have some signal, we want to eliminate any unwanted counts that
result from things other than the neutrons from our source. To do this we must adjust
the band pass filter settings of the single channel analyzer (SCA). Any pulses that are
too weak or too strong will get tossed out. To get a feel for it, play around with
the lower level discrimination and the window size.
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Fig. L.3 The magic icon to press to get the multichannel analyzer to run.

6) Not all of the counts visible on the ratemeter are coming from neutrons. In
order to eliminate the unwanted signal, we will record a spectrum using the multi-
channel analyzer (MCA). Make sure that the (BNC) cable from the SCA is plugged
in to the back of the PC and open the Maestro software. Acquire a spectrum on
the multichannel analyzer and use this spectrum to (fine-)tune the lower
level discrimination and window settings on the SCA to their optimal val-
ues; record these values. Does your MCA spectrum look similar to the one
shown in the figure?
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Fig. L.4 An example output of the MCA, with the counts shown on a log scale.

7) To be completed after the lab: describe the features that you observe
in the spectrum and what their origin might be, i.e. neutrons, gamma rays,
double counted neutron events, etc.
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8) Why didn’t we remove the neutron source from the paraffin bucket?

9) With your now optimized counting chain, make a note the reading
from the ratemeter and do the same with the source removed from the
bucket (taking appropriate precautions as the source is hot). Is this what
you expected? Explain.

10) With the source placed back in the bucket, make a comparison of
the count rate when using the various materials provided for shielding (Cd,
boral, aluminum, borated poly, plastic). Mark down the resulting rateme-
ter readings and describe in what capacity each might be used on a neutron
spectrometer.
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Diffractometer Module

We will use the spectrometer as a 2-axis single detector diffractometer for this module.
There is a sheet with basic spectrometer control commands, such as how to drive the
θ-motor, available to you. The main shutter of the instrument is open. These shutters
are in the wall of the reactor, and they cannot be operated by us. If we want them
closed, we have to ask the control room to do it for us. We have control over the
secondary shutter(s), which are the shutters that are after the monochromator and
before the sample position.

1). Open the secondary shutter, and use the xray and neutron handheld
monitors to assess the level of radiation that is present near the various
parts of the instrument. Close the secondary shutter, and repeat with both
monitors. What do you conclude about how effective the secondary shutter
is at stopping xray radiation?

The next exercise is to look at the straight through beam, and get an idea of its
intensity and the amount of air scattering it generates.
2). Open the secondary shutter, and drive the detector to the straight
through position, that is, to θ=0. Look at the count rate on the rate meter.
Move the detector to θ=0.5 0. Again, look at the rate meter. Do you notice
anything unusual?

3) Stick an attenuator in the beam, and repeat part 2. What you actually
observed in part 2) are the limitations of the detector electronics. It takes a certain
amount of time for the detector to reset, so that it is ready for the next neutron to
be counted. If neutrons come in faster than this reset time, they are not counted. Be
aware of this not only for the straight through beam, but also when you notice an
unusual counting profile when you are looking at a strong Bragg peak of a big sample.
Most likely, if you notice a peak shape that is flat, then your detector is being saturated.

4) With the attenuator in, place a mask before the sample position, and
repeat part 2. What do you conclude?

You have been given a sample of LiMn2O4 in powder form. The unit cell (see fig-
ure) is cubic with a lattice constant of about 8 Å(we are being vague here on purpose).
The wave length of the neutrons that are coming off the monochromator is listed on
the command sheet at the spectrometer.
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5) calculate at what angle you would find neutrons Bragg reflected by
your sample. You can pick any Bragg reflection that you like.

6) Remove the attenuator and drive the detector to your calculated po-
sition. Look at the rate meter to see if you are actually seeing any scattered
neutrons. If you do not see any scattered neutrons, move the detector to
slightly different angles. If you still do not see a lot of neutrons being scat-
tered, sit back and think.

7) Take a scan of your Bragg peak. Make sure the width of your angular
window that you are scanning over is large enough so that you see the peak
intensity drop off to back ground level. What is the characteristic width (in
angle) of your Bragg peak and how do you know you reached background
level?

8) Place a collimator in front of the sample, and repeat part 7). Write
down the acceptance angle of the collimator that you used.

9) Drive the detector to zero angle. Then drive the detector to its high-
est allowed angle (see command sheet) in steps of five degrees while looking
at the rate meter; take note of the angular positions where the rate meter
shows a large number of scattered neutrons. You may have to backtrack a
bit using the drive command to get the position of these new peaks rea-
sonably accurate (say to within 0.2o).

10) To be completed after leaving the beam port floor. Identify the peak posi-
tions of part 9) with their Bragg reflection indices.

11) To be completed after leaving the beam port floor. Estimate the q-resolution
of the spectrometer. How does this compare to the angular resolution you
measured in parts 7) and 8)? You may wish to refer to Chapter 5, eqns 5.3
and 5.4.
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Powder Diffractometer Module

In this module we will take a diffraction profile on a powder (the easy part) and we
will refine the structure of our material using the FULLPROF Rietveld refinement
program (the hard part).

At your disposal you have an unknown powder sample, and a spectrometer. The
spectrometer is already set up to operate at fixed incident neutron wave length. The
approximate value of this wave length is written on the instrument cheat sheet. The
instrument has also been aligned, but not very well. This implies that the nominal (as
per computer readout) zero scattering angle θ=0 does not exactly correspond to the
direction of the straight through beam. So be aware of this when analyzing the data.

1) Place the powder sample on the spectrometer, and take a quick pat-
tern that covers all angles of interest in about half an hour. Use the instrument
cheat sheet to figure out how to do this.

2) Inspect the obtained powder diffraction pattern. Look at how many
counts there are in the most intense peak, and compare this to the back-
ground level. Calculate how long you will have to count for so that the
maximum intensity in the peak is known to at least 1 % accuracy.

3) Set up a run that will take a powder pattern with the accuracy calcu-
lated above. Start the run and make sure that you are actually collecting data. This
is good practice because it is not unusual to spend hours setting up the spectrometer
and the runs, and to forget to, for instance, open the beam shutter. This is the end of
the part to do on the beam port floor.

4) You have been given the data file you measured, and access to the FULLPRO
refinement program and manual. Determine the structure of your material, fol-
lowing the steps outlined in Chapter 6. We want to determine the crystal structure,
the number of atoms in the unit cell, the positions of these atoms and their Debye-
Waller factors. Give it your best shot, and make sure to look at some of the parameters
as determined from your refinement such as the instrumental parameters (zero angle
offset, incident wavelength, background, resolution), as well as how reasonable your
Debye-Waller factors appear to be.
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5) Try to identify what material you were looking at using any data base
you can find on the internet.
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Reflectometry Module

In this module we will align a sample on the reflectometer and measure its reflectivity
profile. The reflectometer has been aligned for you, everything (including higher-order
filters) is in place and the wavelength of the neutrons in the incoming beam is fixed
at λ= 2.36 Å.

You have been provided with a sample of a Ni film of unknown thickness (to be
determined in this module); the film is on a glass substrate, as shown in the photo. The
goal is to determine the scattering length density profile of the sample as a function
of distance to the air-film interface. The steps are to align the sample, to measure the
on-specular and off-specular intensities, to convert the raw data to a reflectivity curve,
and to fit a model reflectivity curve to the data. The last step will yield the desired
scattering length density profile.

Fig. O.1 The sample consists of a thin nickel film on a fat glass substrate.

1) Establish a reasonable starting position. The alignment procedure is an iterative
process. First, mount the sample on the sample table. To give yourself a good
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starting point, check by eye that the sample is aligned with the beam (as defined by
the slits). This is, of course, somewhat crude, but we are only trying to get a leg up
for the next step where we use neutrons to align the sample in a more precise way.
This should be just quick and dirty.

2) Locate the sample. That is, translate the sample laterally through the beam
(refer to the instrument quick reference sheet for the correct drive commands as well
as for the motor mnemonics). The sharpness of the edges that you observe depends
on how close the θ-position is to the true zero position; this should improve with each
iteration step [we will repeat steps 2) through 5)], unless you happened to have a very
lucky starting position. Note that the sample holder backing consists of a sandwich
of aluminum-cadmium-aluminum. Determine where the sample surface is and
move the the sample to that position. Sketch the translation profile and
identify the features present and write down the position of the Ni surface.

3) Cut the beam. Now your sample should be position so that it is just cutting
the beam. By that we mean, if you back off the sample slightly the beam will pass by
untouched, but if you push forward slightly it will begin to obscure the beam. This
is the condition that we want for our measurements but the problem is that there
are still some accumulated errors resulting from misalignments of the θ-position and
the tilt under the sample. The next step is to rock the θ-angle to determine the
center position. Write down the apex of the scan, move to this position,
and encode it to zero (again, consult the quick reference sheet).

4) Align the θ-position. In order to gain accuracy in our θ-alignment, it is nec-
essary to move to a non-zero 2θ-position and re-measure the θ-rocking curve. The
reason behind this is to move away from the high background of the straight through
beam and its associated air scattering and use actual specular reflection. So there is
a trade-off, because going to higher 2θ moves you further from the high background
but your reflected signal also drops off proportional to 1/q4. Choose a value of 2θ with
this in mind and measure the θ-rocking curve at this position. Mark down
the center of mass, move to this position, and encode it to be where it was
supposed to be (how do you know where it should be?). This will be a longer scan
because, of course, there are far fewer neutrons away from the straight through beam.

5) Align the sample tilt position. We have not yet touched the sample tilt. The
way to align this is simply to redo a rocking curve of the tilt axis at the specular,
non-zero θ − 2θ position. This will also be a longer scan and may require repetition
depending on your initial choice of scan range. Move to the center of mass of the
observed intensity.

6) Fine-tune the alignment. Because the changes to tilt- and (especially) θ-offsets
affect what the translation profile looks like, we must repeat steps 2) through 5)
until we are satisfied that the alignment is sufficiently good. Do this and put some
thought into how good is good enough for the alignment. And, as always, take careful
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notes.

7) Measure the reflectivity. Well, actually, you will have to do some processing of
your raw data in order to get to a reflectivity curve; in actuality, in this step you will
measure the specular and off-specular intensities. Write a macro (with the
aid of your instructor) to measure these. Write down the name of your macro data file
in your notes. Run the macro. This concludes the in-class portion of the module.

8) Convert the data into a reflectivity curve. The definition of reflectivity was given
in Chapter 8. How do you get from your raw data to a reflectivity curve? Write down
the procedure that you will use and implement it.

9) Refine the footprint correction. The reflectivity below the critical angle (or equiv-
alently, q < qcritical) should be flat as a function of angle down to where the straight
through beam starts to come in and overwhelm our signal. Is this the case for your
plot? If not, then consider how to adjust the footprint correction1 in a more refined
way. That is, consider a Gaussian beam (a beam that falls off in intensity according
to a Gaussian profile with characteristic width W ) impingent upon a sample surface
whose length is L (measured along the straight through beam). From your notes during
the alignment procedure, you should be able to come up with a beam width. Write
up a solution and apply it to your data. Hint: your answer should take the form
of an error function.

10) Model the reflectivity curve. Now that you have a nice flat reflectivity for angles
below the critical angle, you are ready to model your reflectivity data. The NIST Cen-
ter for Neutron Scattering supports a free-to-download reflectivity analysis software
package called reflpak, which can be found at the following URL:
http://www.ncnr.nist.gov/programs/reflect/data reduction/software/index.html. This
package will allow you to model a reflectivity curve and ultimately determine
the Ni film thickness and the scattering length density profile. Note that it is
necessary to convert the data into the appropriate format to be read into the software.
Hand in a graph that shows the agreement between your model and the measured
reflectivity profile.

1With footprint we mean what fraction of the incident beam is intercepted by the sample. The
more we rotate this sample, the larger the fraction that is intercepted. Assuming a beam whose
intensity is constant as a function of its width, geometry tells us that the fraction of the beam that
is intercepted by the sample is proportional to 1/sinθ ∼ 1/q.
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Triple Axis Spectrometer Module

In this module we will align a single crystal, and we will measure longitudinal and (for
the hard-condensed matter scientists) transverse phonons. The TRIAX spectrometer
has been aligned for you, everything (including higher-order filters) is in place, and
the incoming neutron wave length is set to λ= 2.37 Å.

You have been given a single crystal of the mineral fluorite, CaF2, as shown in
the photo. The crystal structure of fluorite has been resolved using powder diffrac-
tion. The structure is face centered cubic (Fm3m, space group 225) (Fig. P.1). The
room temperature lattice spacing is a= 5.4626 Å. The powder pattern relevant to our
present TRIAX settings is shown in Fig. P.2.

Fig. P.1 The left panel shows the single crystal of CaF2, the right panel shows the positions

of the atoms within the unit cell (image (right panel image source: Wikimedia Commons,

image by NIMSoffice).

The first task is to align the crystal. This means that we will orient the crystal in
such a way that we can transfer momentum along a specific crystallographic direction.
Looking at the powder pattern, we see that the (family of) (220)-Bragg peak(s) is a
strong one. This implies that phonons in this Brillouin zone will also be strong, and
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Fig. P.2 The powder pattern as a function of scattering angle θ for CaF2 with incident

neutron wave length λ= 2.37Å.

we will try to measure a longitudinal phonon at (2 + h, 2 + h, 0). We can only do this
if we have the crystallographic (110)-direction in our scattering plane.

1) To do after the lab: Make a sketch of the positions of the atoms in the
unit cell looking down along the c-axis (z-direction). Verify that it makes sense
that the (220)-reflection is a very strong one (both F and Ca have positive scattering
lengths).

Fluorite cleaves along (111)-planes, giving the crystal its distinct octahedral shape.
This implies that if we place the crystal on one of its cleavage planes, that the (111)
direction will be pointing straight up. This is good, because the (220)-direction is per-
pendicular to this [ the (2,-2,0) direction really, but all these directions are equivalent
in a cubic system], implying it will be in the scattering plane.

2) Enter the crystal information (cubic, lattice spacing, etc.) into the
SPICE software. Tell the computer that one of the crystal directions in the scat-
tering plane will be the (1,-1,0)-direction. Pick (1,1,-2) as the second vector that is in
the scattering plane. Verify (for yourself) that the three vectors [(1,1,1), (1,-1,0) and
(1,1,-2)] are perpendicular to each other).

3) Place (and secure) the sample on the sample table at the right height
for it to intercept the incoming neutron beam, and drive the detector to
the correct angle for the (220)- Bragg reflection. Rotate the crystal (using
a software command) until you notice a lot of counts in the detector (or
on the rate meter). This is the (220) Bragg reflection.

4) Turn off the beam, and look at the crystal. Picture the (220) planes in your
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mind’s eye, and reposition the crystal on the sample holder in such a way
that the normal to the (220)-planes coincides with a tilt axis of the sample
table. In this way, we can adjust the tilt angles under the crystal in such a way that
the two tilt adjustments are decoupled from each other. Once the crystal has been
repositioned, rotate the sample angle (using the computer) until you have
found the (220) Bragg peak again.

5) Scan the sample angle, fit the data, and set the angle under the sam-
ple so that it is located at the peak of the intensity. Now redo the scan
of the sample angle, while simultaneously varying the scattering angle by
double the amount (question for afterwards: why double?). For instance, this com-
mand could read ’scan s2 60 64 0.1 s1 40 42 0.05’. After the scan, drive both motors
to the peak position of the scan. Instruct the software that you are now
sitting on top of the (2,-2,0) peak.

6) While sitting on the peak, scan the sample tilt motor (sgu or sgl) to find the
maximum intensity. If the sample tilt is off by more than a degree, then redo step 5)
after driving the sample tilt motor to the peak position. You are now aligned on the
(2,-2,0) Bragg peak, while the (equivalent) of the (111)-direction is pointing vertically
up.

We now need to locate another Bragg peak in our scattering plane formed by the
(1,-1,0) and (1,1,-2) directions. However, there are not many peaks to choose from as
we learned from the powder pattern in Fig. P.2.

7) Verify that the (2,0,-2) peak is in the scattering plane. Drive there,
and repeat all the steps to get the optimal reflection for the (2,0,-2) re-
flection. Update the software. Look at the powder pattern and tell the software to
drive to another strong Bragg peak that is not one of the two peaks that we used for
aligning the crystal. Provide feedback on the software’s feedback when you
do this. Instead, drive to the (1,1,-2) peak, and notice its absence. Remove the PG
filter, or ask the instrument scientist to remove it. Notice the counts on the
rate meter. What is happening here?

8) Do an elastic scan of the (2,0,-2) Bragg peak in the longitudinal and
transverse directions. We will need this to see over what range (in q-space) the
Bragg peak has been smeared out. Print the graphs.

9) Try to measure a longitudinal phonon. To do so, ensure that the momentum
transfer is in the longitudinal direction (such as when the momentum transfer is (2.1,0,-
2.1). Pick a position in q-space that is outside of the resolution broadened
Bragg peak, but that is still fairly close to the Bragg peak. Set up an in-
elastic scan in such a way that a varying amount of energy is transferred to the
sample at constant momentum transfer. Do this by varying the incident energy of the
neutron, while keeping the final energy fixed. Start with a scan that covers an
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energy transfer range of 0 < E <8 meV. If you observe a peak, put in a longer
scan, if not, measure closer to the Bragg peak.

10) Optional, for those interested in hard-condensed matter. Measure a trans-
verse phonon as well. Do this by typing in the correct software command and let it
measure while you are no longer on the beam port floor.

11) To do after lab: determine the longitudinal and transverse speed of
sound for this mineral. Compare with literature values.
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Final Projects

The following are examples of final projects that were given to the students during
the first run of the course at MU, Spring 2012.

Final assignment for PHY xxx

The assignment consists of 4 parts:

• writing a proposal for beam time,

• obtaining the sample and (designing the) sample holders,

• doing the experiment,

• analyzing the data and writing a report,

The beam time proposal is due on xxx, the sample holder design is due April xxx,
and the Final report is due on xxx.

To complete this assignment, you have at your disposal three instruments at MURR
[the powder diffractometer, the reflectometer and the 3-axis spectrometer], a modest
budget, and the physics machine shop. At any point you can ask Tom Heitmann, Hel-
mut Kaiser, and Wouter Montfrooij for advice, or your advisor.

You will do the two projects in groups of two; all written parts will be submitted
as a group, and they will be graded as a group.

The assigned topic is based on your research, and it should be viewed as a stepping
stone to being able to do neutron scattering experiments that you will use in your
research. In fact, after this course we will be happy to help you out with any future
experiments (at least, that is what we say until the evaluations are in).

Topic: (all 5 projects that were given are listed A-E).

• (A) Loading activated carbon with N2 might tell us something about what H2

does in the pores. Load a sample with N2 such that it will scatter 10% of the
neutrons. Determine whether the N2 molecules are deposited as molecules, or
as atoms (dissociation). Determine whether N2 forms a single layer, or multiple
layers in the pores. Determine the average pore diameter from your results.

• (B) Loading activated carbon with N2 might tell us something about what H2 does
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in the pores. Load a sample with N2 such that it will scatter 10% of the neutrons.
The dynamics of molecules in confined geometries will tell us something about
their binding energies, and what brings about those binding energies. Set up a
neutron scattering experiment that demonstrates that we can glean information
about the dynamics of nitrogen molecules in pores of activated carbon. Try to
make the experiment sensitive to changes (from bulk N2 behavior) in short wave-
length sound waves, in heat transport, and in the behavior of individual molecules.
Report on what you can learn about the dynamics of N2 in confinement, and how
it differs from bulk behavior.

• (C) First, calculate the spin wave dispersion for a body centered cubic system of
two magnetic atoms, where the one atom has a spin of magnitude 5/2, and the
other has a spin magnitude of 3/2. Both species have their spin aligned along
the c-axis, but they are pointing in opposite directions. Second, you have a single
crystal of magnetite Fe3O4. This crystal is ferri-magnetic at room temperature.
Measure the spin wave dispersion of the acoustic spin waves (in a suitable Brillouin
zone) and determine the strength of the magnetic interaction between (some) Fe
ions.

• (D) Determine the crystal structure, including any superstructure, of TiMn0.25S2s.
Determine whether magnetic clusters exist at low temperature, and if so, measure
their temperature dependence up to the point they disappear. Do this in such a
way that shows whether the onset of magnetic clustering upon cooling is gradual
(a second order transition), or sudden (a first order transition).

• (E) Determine the scattering length density of a single supported lipid bilayer on
a Si substrate. Measure a second contrasting lipid sample and discuss what differ-
ence and similarities you are able to determine from the neutron data concerning
the difference in lipids used as well as whatever you are able to say about the
sample quality. Be as detailed as possible.

Proposal:
The proposal should include all the technical details: sample composition, instrument
of choice for the experiment, estimate of how much beam time is required, dimensions
of sample, what to use for a sample holder, any special instrument requirements (col-
limation for instance). Do you need to measure background runs? In short, everything
that is relevant should be put in there, similar to the proposals that are included in
the handouts. Based on this proposal, we will give you beam time on one of the in-
struments. The proposal is due on xxx.

Sample and sample holder:
To do the experiment, we need a sample, such as heavy water or some intercalated
powder. We will also need to place the sample on the spectrometer, perhaps even in
a cryostat or furnace. Likely we will have to design a suitable sample holder for this.
Present a design for a sample holder to us (Tom, Helmut or Wouter), and once we
think it will work, we will ask the physics machine shop to fabricate it. The due date
on the sample holder design is xxx.



Final Projects 313

Experiment:
We will be there to make sure you do not make fatal mistakes, but essentially, it is all
up to you. The experiment will take place in the period xxx-xxx.

Data Analysis:
It is a long process to go from the data as they roll off the instrument (raw data) to
what we want to know about the sample. There (possibly) need to be corrections for
background, attenuation, detector efficiency just to name a few. Your data analysis
will not be perfect, but you should get as much information out of your data as pos-
sible. The final report, in journal article form, is due on xxx.
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absence of second order contamination, 73
alignment, 269
diffractometer, 72
focusing, 165, 204
mosaicity, 75
polarized, 166
reflectometer, 144
table, 165
triple axis spectrometer, 156

Multi-phonon, 229
Multi-phonon correction, 222
Multiple scattering, 227

Bragg scattering, 228, 231

Neutron
absorbtion, 26, 28

likelihood, 28
capture, 26
characteristics, 22
index of refraction, 136
scattering likelihood, 22
size, 20
speed, 20, 25

requirement, 20
wave length, 25

neutron
detector, 26

Neutron camera, 208, 273
Normalization, 258

absolute scale, 258, 260

Order(ing)

magnetic, 66
short range, 67, 70
three dimensions, 257
two dimensions, 257

Oscillations
diatomic molecules, 282

Partial waves, 247
Phase, 40
Phase angle, 40, 46
Phase problem, 133, 149
Phase transition

conformation, 66
magnetic, 66
soft modes, 182

Phonon
Debye-Waller factor, 179

Phonons, 55, 178
Placzek correction, 65
Polarized reflectometer, 147
Polarized scattering, 192
Polydispersity, 122
Porod region, 122
Powder

preferred orientation, 105, 285
symmetry unit cell, 284

Powder diffraction, 84
Lorentz factor, 88
miller indices, 99
Rietveld refinement, 102

Powder diffractometer
components, 93

collimators, 94
resolution, 85

focusing, 94
Preferred orientation, 105
Probing wave length

connection to distance in material, 12, 20
connection to incoming, 12
moiré pattern, 12
SANS, 112
small, 46, 52

Radius of gyration, 120, 285
determination, 125
resolution effect, 132

Recoil energy, 259
Refinement

FULLPROF, 108
magnetic systems, 108
Reverse Monte Carlo, 106
Rietveld, 103

Reflection
specular, 133

Reflectivity
applets, 149
bilayer, 140

oscillations, 141
Bragg peaks, 141
continuum approximation, 133
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membrane, 143
multilayer, 141
off specular, 134, 143
single layer, 286
substrate, 137, 139
total, 133, 137, 152, 286

critical angle, 137
Reflectivity profile, 136
Reflectometer, 133

alignment, 145, 262
background counts, 146
collimators, 133
direction of momentum transfer, 134
footprint correction, 147
horizontal surface, 134
limitations, 134, 153
magnetic materials, 136
polarized, 147
reflectivity profile, 136
scattering length density, 135
slits, 144
vertical surface, 134

Relaxation of fluctuations, 254, 255
Relaxation rate, 255

diffusion, 255
Residual stress diffractometer, 80
Resolution, 36, 74

angular, 204
diffractometer, 90, 284
energy, 201, 204, 271

reactor source vs spallation source, 202
in plane, 76
incident energy, 77
out of plane, 76
planning experiment, 200
powder diffractometer

focusing, 94
q-resolution, 74
radius of gyration, 285
resolution ellipse, 176
SANS, 112, 129
spurions, 232
triple axis spectrometer, 161

Response function, 252
definition, 252

Reverse Monte Carlo method, 106
Rietveld refinement, 84, 102

Debye-Waller factor, 104
order of varying fit parameters, 103
u, v and w parameters, 103

Sample
activation, 207

Sample thickness, 32, 242, 282
SANS, 111

attenuators, 129
collimators, 129
contrast, 114
contrast factor, 116
form factor, 115

fractals, 122
Porod region, 122
powerlaw, 120
powerlaw examples, 122
radius of gyration determination, 125
size and shape of particles, 120

gravity, 129
Guinier radius, 120
limitations, 113
line shape, 132
master equation, 116
membrane scattering, 127
moveable beam stop, 129
polydispersity, 122
probing wave length, 112
radius of gyration, 120
resolution, 112, 129
scattering length density, 114
signal averaging, 123
static structure factor, 118
vacuum tank, 113
velocity selector, 128
vortex lattices, 126
wave length calibration, 131

SANS-toolbox, 111
Scattered wave, 11, 248
Scattering

absorbtion, 242
background, 220
basics, 14
Bragg scattering, 13
coherent, 23, 24, 243

substitution, 243
connection counts and dynamic structure

factor, 38
cross-section, 22
elastic, 18
fixed angle, 287
fixed momentum transfer, 287
incoherent, 23, 24, 28, 55, 242

substitution, 243
inelastic, 17, 18, 154, 281

analogue, 281
interatomic distances, 14
interference

connection, 9, 11, 21
large structures, 19
limitations, 12, 16, 18, 20, 25, 37, 49, 65,

113
magnetic, 18, 55

directional dependence cross-section, 68
paramagnetic, 260

multi-phonon, 222, 229
polarized, 166
range of length scales, 12
real space, 16
real time, 16
s-wave, 247
sample size, 22
semi-polarized, 192
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small angle, 16, 112
spherically symmetric, 247
xray, 22

Scattering length, 26, 42, 242, 247, 281
biology, 281
cross-section connection, 28
determination, 136
negative, 27, 249
order of magnitude, 27, 249
square well potential, 249
table, 242
zero, 30, 281

Scattering length density, 30
reflectometer, 135, 136
SANS, 114

Scattering triangle, 182
SESANS, 189
Slits, 263
Solids, 53
Sound modes, 254, 283
Sound waves, 18, 24, 283

lifetimes, 53
liquids, 51
overdamped, 234
solids, 53
speed of propagation, 57, 183, 283

Space groups, 97
Specular reflection, 133
Spin echo length, 190
Spin echo technique, 184
Spin flipper, 147
Spin waves, 56
Spurions, 178, 230
Static structure factor, 44

limiting behavior, 259
liquids, 46
oscillations, 46

Static susceptibility, 259
Strain measurement, 81
Sumrules, 237, 258

cross-section, 258
dynamic structure factor, 64, 258
f-sumrule, 259
magnetic scattering, 260
static susceptibility, 259

Textbooks, 2
Thermal motion, 88
Total reflection, 286

Transforms
Fourier, 252
Laplace, 252

Transmission, 29, 227, 261
Triple axis spectrometer, 154

alignment, 170, 269
least squares fit, 271

analyzer, 156, 173
background counts, 154
collimators, 163, 174
detector, 174
energy transfer, 157
filters, 162, 171
focusing, 270
masks, 169
monitor, 166
monochromator, 156, 163

energy transfer, 163
resolution, 161, 174

collimators, 174
energy, 176
incident energy, 175
RESLIB, 175
resolution ellipse, 175

scales, 271
scattering triangle, 182
shielding, 161

background reduction, 161
tilt angles, 170
velocity selector, 167

Unit cell, 97
symmetry, 97

Unit conversion, 241

Velocity selector, 73
SANS, 128
triple axis spectrometer, 167

Wave function
match boundary conditions, 137, 249, 286
reflectometer

one dimensional, 136
scattered wave, 30, 248

Wave-particle duality, 10

Xray scattering, 22, 25, 27

Zero-point motion, 88
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